TIF1γ (Transcriptional Intermediary Factor 1 γ) has been implicated in Smad-dependent signaling by Transforming Growth Factor beta (TGF-β). Paradoxically, TIF1γ functions both as a transcriptional repressor or as an alternative transcription factor that promotes TGF-β signaling. Using ordinary differential-equation models, we have investigated the effect of TIF1γ on the dynamics of TGF-β signaling. An integrative model that includes the formation of transient TIF1γ-Smad2-Smad4 ternary complexes is the only one that can account for TGF-β signaling compatible with the different observations reported for TIF1γ. In addition, our model predicts that varying TIF1γ/Smad4 ratios play a critical role in the modulation of the transcriptional signal induced by TGF-β, especially for short stimulation times that mediate higher threshold responses. Chromatin immunoprecipitation analyses and quantification of the expression of TGF-β target genes as a function TIF1γ/Smad4 ratios fully validate this hypothesis. Our integrative model, which successfully unifies the seemingly opposite roles of TIF1γ, also reveals how changing TIF1γ/Smad4 ratios affect the cellular response to stimulation by TGF-β, accounting for a highly graded determination of cell fate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314286PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033761PLOS

Publication Analysis

Top Keywords

tgf-β signaling
12
tif1γ/smad4 ratios
12
integrative model
8
tgf-β
7
tif1γ
6
signaling
5
dynamic regulation
4
regulation tgf-b
4
tgf-b signaling
4
signaling tif1γ
4

Similar Publications

Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

APE1-Activated and NIR-II Photothermal-Enhanced Chemodynamic Therapy Guided by Amplified Fluorescence Imaging.

Anal Chem

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.

The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.

View Article and Find Full Text PDF

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!