Melanomas and other cancers that do not express argininosuccinate synthetase (AS), the rate-limiting enzyme for arginine biosynthesis, are sensitive to arginine depletion with pegylated arginine deiminase (ADI-PEG20). However, ADI resistance eventually develops in tumors because of AS upregulation. Although it has been shown that AS upregulation involves c-Myc, the underlying mechanisms remain unknown. Here we show that ADI-PEG20 activates Ras signaling and the effector extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/AKT/GSK-3β kinase cascades, resulting in phosphorylation and stabilization of c-Myc by attenuation of its ubiquitin-mediated protein degradation mechanism. Inhibition of the induced cell signaling pathways using PI3K/AKT inhibitors suppressed c-Myc induction and enhanced ADI-mediated cell killing. Notably, in an animal model of AS-negative melanoma, combination therapy using a PI3K inhibitor plus ADI-PEG20 yielded additive antitumor effects as compared with either agent alone. Taken together, our findings offer mechanistic insight into arginine deprivation metabolism and ADI resistance, and they illustrate how combining inhibitors of the Ras/ERK and PI3K/AKT signaling pathways may improve ADI-PEG20 anticancer responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433038PMC
http://dx.doi.org/10.1158/0008-5472.CAN-11-3605DOI Listing

Publication Analysis

Top Keywords

argininosuccinate synthetase
8
arginine deiminase
8
adi resistance
8
signaling pathways
8
arginine
5
activation ras/pi3k/erk
4
ras/pi3k/erk pathway
4
pathway induces
4
c-myc
4
induces c-myc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!