The intraglomerular renin-angiotensin system (RAS) is linked to the pathogenesis of progressive glomerular diseases. Glomerular podocytes and mesangial cells play distinct roles in the metabolism of angiotensin (ANG) peptides. However, our understanding of the RAS enzymatic capacity of glomerular endothelial cells (GEnCs) remains incomplete. We explored the mechanisms of endogenous cleavage of ANG substrates in cultured human GEnCs (hGEnCs) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and isotope-labeled peptide quantification. Overall, hGEnCs metabolized ANG II at a significantly slower rate compared with podocytes, whereas the ANG I processing rate was comparable between glomerular cell types. ANG II was the most abundant fragment of ANG I, with lesser amount of ANG-(1-7) detected. Formation of ANG II from ANG I was largely abolished by an ANG-converting enzyme (ACE) inhibitor, whereas ANG-(1-7) formation was decreased by a prolylendopeptidase (PEP) inhibitor, but not by a neprilysin inhibitor. Cleavage of ANG II resulted in partial conversion to ANG-(1-7), a process that was attenuated by an ACE2 inhibitor, as well as by an inhibitor of PEP and prolylcarboxypeptidase. Further fragmentation of ANG-(1-7) to ANG-(1-5) was mediated by ACE. In addition, evidence of aminopeptidase N activity (APN) was demonstrated by detecting amelioration of conversion of ANG III to ANG IV by an APN inhibitor. While we failed to find expression or activity of aminopeptidase A, a modest activity attributable to aspartyl aminopeptidase was detected. Messenger RNA and gene expression of the implicated enzymes were confirmed. These results indicate that hGEnCs possess prominent ACE activity, but modest ANG II-metabolizing activity compared with that of podocytes. PEP, ACE2, prolylcarboxypeptidase, APN, and aspartyl aminopeptidase are also enzymes contained in hGEnCs that participate in membrane-bound ANG peptide cleavage. Injury to specific cell types within the glomeruli may alter the intrarenal RAS balance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378096PMC
http://dx.doi.org/10.1152/ajprenal.00087.2012DOI Listing

Publication Analysis

Top Keywords

ang
13
glomerular endothelial
8
endothelial cells
8
cleavage ang
8
compared podocytes
8
cell types
8
aspartyl aminopeptidase
8
inhibitor
6
glomerular
5
activity
5

Similar Publications

Severity of metabolic derangement predicts survival after out-of-hospital cardiac arrest and the likelihood of benefiting from extracorporeal life support.

Emergencias

December 2024

Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seúl, República de Corea. Department of Digital Health, SAIHST, Sungkyunkwan University, Seúl, República de Corea.

Objective: To develop a Metabolic Derangement Score (MDS) based on parameters available after initial testing and assess the score's ability to predict survival after out-of hospital cardiac arrest (OHCA) and the likely usefulness of extracorporeal life support (ECLS).

Methods: A total of 5100 cases in the Korean Cardiac Arrest Research Consortium registry were included. Patients' mean age was 67 years, and 69% were men.

View Article and Find Full Text PDF

Peak Procedural ACT Is Associated With All-Cause Mortality After Femoral Access PCI.

J Soc Cardiovasc Angiogr Interv

December 2024

Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, San Diego, California.

Background: A minimum threshold activated clotting time (ACT) to guide heparin dosing during percutaneous coronary intervention (PCI) is associated with lower ischemic complications. However, data are variable regarding the risk of high ACT levels. The aim of this study was to assess the impact of peak procedural ACT on complications and mortality for transfemoral and transradial access PCI.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

YTHDF3-mediated FLCN/cPLA2 axis improves cardiac fibrosis via suppressing lysosomal function.

Acta Pharmacol Sin

January 2025

Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.

Cardiac fibrosis characterized by aberrant activation of cardiac fibroblasts impairs cardiac contractile and diastolic functions, inducing the progression of the disease towards its terminal phase, resulting in the onset of heart failure. Therefore, the inhibition of cardiac fibrosis has become a promising treatment for cardiac diseases. The ovarian follicle-stimulating hormone folliculin (FLCN) plays a significant role in various biological processes, such as lysosome function, mitochondrial synthesis, angiogenesis, ciliogenesis and autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!