Heterophase polymerizations have gained increasing attention in the past decades, especially as the decoration and functionalization of the particle surface for further applications gets more and more into focus. One promising approach for the functionalization exclusively on the particle surface is the use of surfmers (surfactant and monomer). Herein, we present the synthesis of a new family of surfmers and their use for decorating nanoparticles with phosphonate groups through miniemulsion polymerization. Furthermore the synthesis of a dye-labeled functional surfmer provided an elegant manner to evaluate and get deeper insights about its copolymerization. Additionally, potential applications of the synthesized particles in biological studies as well as their use as template for biomimetic mineralization are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201103256DOI Listing

Publication Analysis

Top Keywords

miniemulsion polymerization
8
biomimetic mineralization
8
particle surface
8
design synthesis
4
synthesis miniemulsion
4
polymerization phosphonate
4
phosphonate surfmers
4
surfmers application
4
application studies
4
studies nanoparticles
4

Similar Publications

Photothermal Miniemulsion Polymerization by Amphiphilic Gold Nanoclusters.

Chem Asian J

December 2024

University of Science and Technology Beijing, School of Materials Science and Engineering, HaiDian District,XueYuan Road 30 Beijing, 100083, Beijing, CHINA.

Gold nanoclusters (AuNCs), which are approximately 2 nm in size, exhibit distinctive photophysical and catalytic properties, but their performance is often compromised by environmental factors. To mitigate these challenges, attempts have been made to incorporate AuNCs into polymer matrices to enhance their stability. Miniemulsion polymerization has proven to be an effective method for fabricating organic-inorganic composites.

View Article and Find Full Text PDF

Mini-emulsion and nanoprecipitation techniques relied on large amounts of surfactants, and unresolved miscibility issues of heterojunction materials limited their efficiency and applicability in the past. Through our molecular design and developed surfactant-free precipitation method, we successfully fabricated the best miscible bulk-heterojunction-particles (BHJP) ever achieved, using donor () and acceptor () polymers. The structural similarity ensures optimal miscibility, as supported by the interaction parameter of the / blend is positioned very close to the binodal curve.

View Article and Find Full Text PDF

Processing and Properties of Polyhydroxyalkanoate/ZnO Nanocomposites: A Review of Their Potential as Sustainable Packaging Materials.

Polymers (Basel)

October 2024

Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium.

The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand out for their good mechanical and medium gas permeability properties, making them promising materials for food packaging applications.

View Article and Find Full Text PDF

The preparation of so-called hybrid nanomaterials has been widely developed in terms of functional and morphological complexity. However, the specific control of the arrangement of organic and inorganic species, which determines the properties of the final material, still remains a challenge. This article offers a review of the strategies that have been used for the preparation of polymer-inorganic hybrid nanoparticles and nanocapsules via processes involving miniemulsions.

View Article and Find Full Text PDF

A robust method is described to synthesize degradable copolymers under aqueous miniemulsion conditions using α-lipoic acid as a cheap and scalable building block. Simple formulations of α-lipoic acid (up to 10 mol %), -butyl acrylate, a surfactant, and a costabilizer generate stable micelles in water with particle sizes <200 nm. The ready availability of these starting materials facilitated performing polymerization reactions at large scales (4 L), yielding 600 g of poly(-butyl acrylate--α-lipoic acid) latexes that degrade under reducing conditions (250 kg mol → 20 kg mol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!