Sorting of membrane proteins in eukaryotic cells is a complex yet vital task that involves several 10,000 molecular players. Sorting takes place not only along the early secretory pathway, i.e., between the endoplasmic reticulum and the Golgi apparatus, but also between other organelles, including exchange with the cell's plasma membrane. Traditionally, specific binary interactions between proteins have been made responsible for most of the protein sorting. A more active role of lipids, however, became visible in recent years. Not only do lipids in complex membranes show domain formation that may support/suppress sorting events, but also collective, membrane-mediated interactions have emerged as a robust physico-chemical mechanism to drive protein sorting. Here, we will review recent insights into these aspects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09687688.2012.667838 | DOI Listing |
J Virol
January 2025
Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA.
Unlabelled: Microtubule acetylation, a post-translational modification catalyzing the addition of acetyl groups to lysine residues on alpha tubulin, confers mechanical resilience to microtubules and influences intracellular cargo transport. Despite its known cellular functions, its role in viral infections remains poorly understood. The goal of this study was to determine the role of microtubule acetylation in both HIV-1 infection and TRIM69-mediated restriction.
View Article and Find Full Text PDFThe Golgi apparatus is a critical organelle responsible for intracellular trafficking and signaling, orchestrating essential processes such as protein and lipid sorting . Dysregulation of its function has been implicated in various pathologies, including obesity, diabetes, and cancer, highlighting its importance as a potential therapeutic target. Despite this, the development of tools to selectively target the Golgi in specific cell types remain a significant unmet challenge in imaging and drug discovery.
View Article and Find Full Text PDFTDP-43 mislocalization and pathology occurs across a range of neurodegenerative diseases, but the pathways that modulate TDP-43 in neurons are not well understood. We generated a Halo-TDP-43 knock-in iPSC line and performed a genome-wide CRISPR interference FACS-based screen to identify modifiers of TDP-43 levels in neurons. A meta-analysis of our screen and publicly available screens identified both specific hits and pathways present across multiple screens, the latter likely responsible for generic protein level maintenance.
View Article and Find Full Text PDFIn p53-deficient cancers, targeting cholesterol metabolism has emerged as a promising therapeutic approach, given that p53 loss dysregulates sterol regulatory element-binding protein 2 (SREBP-2) pathways, thereby enhancing cholesterol biosynthesis. While cholesterol synthesis inhibitors such as statins have shown initial success, their efficacy is often compromised by the development of acquired resistance. Consequently, new strategies are being explored to disrupt cholesterol homeostasis more comprehensively by inhibiting its synthesis and intracellular transport.
View Article and Find Full Text PDFUnlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!