Prosopis laevigata and Mimosa biuncifera are frequently found in arid and semiarid shrublands, but scarce information is available about their influence on plant community structure and soil fertility. We compared plant community structure, diversity and soil nutrients of three semiarid shrubland sites located in Mezquital Valley, Mexico. These sites differ in their dominant species: Site 1 (Bingu) P. laevigata, Site 2 (González) M. biuncifera, and Site 3 (Rincón) with the presence of both legumes. The results showed that the plant community with P. laevigata and M. biuncifera (Site 3) had more cover, taller plants and higher plant diversity than sites with only one legume (Site 1 and Site 2). Soil organic matter (SOM), soil organic carbon (SOC), total nitrogen (TN), phosphorus-Olsen (P) and C mineralization were higher in the soil under the canopy of both legumes than in bare soil. In contrast, soil cation concentrations were lower under the canopy of P. laevigata, but not for M. biuncifera. In addition, the density of arbuscular mycorrhizal fungi spores was higher within the soil under the canopy of M. biuncifera than in the soil under the canopy of P. laevigata. Thus, resource islands (RI) created by P. laevigata increased the amounts of SOC, TN and P when compared with the RI of M. biuncifera. This study provided evidences about the importance of species identity in order to expand the niche availability for the establishment of other plants, and highlights that P. laevigata and M. biuncifera jointly influencing plant colonization within semiarid ecosystems.
Download full-text PDF |
Source |
---|
Adv Sci (Weinh)
January 2025
School of Geography, Nanjing Normal University, Nanjing, 210023, China.
Despite advances in dispersal mechanisms and risk assessment of antibiotic resistance genes (ARGs), how plants influence ARG contamination in agricultural soils remains underexplored. Here, the impacts of plant species and diversity on ARGs and mobile genetic elements (MGEs) in three agricultural soils are comprehensively investigated in a pot experiment. The results indicate that increased plant diversity reduces ARGs and MGEs abundance by 19.
View Article and Find Full Text PDFEnviron Technol
February 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China.
Dealing with oil spills is urgent, and bioaugmentation is a low-cost and environmentally friendly method. However, little research has been done on the remediation effect of bioaugmentation in oil-polluted environments with bottom seawater microorganisms. This work constructed the bottom seawater (S) group and surface seawater environment (T) group to study the oil degradation ability and the microbial community successions tendency with the function of integrated bacterial consortium.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Environmental Microbiology Group, Institute of Water Research, University of Granada, 18003, Granada, Spain.
Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.
View Article and Find Full Text PDFmSphere
January 2025
Animal nutrition and feed science, College of Animal Science and Technology, Shihezi University, Shihezi, China.
This study aimed to investigate the effects of and on the chemical composition, fermentation characteristics, bacterial communities, and predicted metabolic pathways of whole-plant triticale silage (). Fresh triticale harvested at the milk stage was ensiled in sterile distilled water (CON), (ST), (LP), and a combination of and (LS) for 3, 7, 15, and 30 days. During ensiling, the pH and water-soluble carbohydrate (WSC) content in the inoculated groups was significantly lower than those in the CON group ( < 0.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA.
Bacteria encounter chemically similar nutrients in their environment, which impact their growth in distinct ways. Among such nutrients are cobamides, the structurally diverse family of cofactors related to vitamin B (cobalamin), which function as cofactors for diverse metabolic processes. Given that different environments contain varying abundances of different cobamides, bacteria are likely to encounter cobamides that enable them to grow robustly and also those that do not function efficiently for their metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!