Herpes simplex virus 1 (HSV-1) enters neurons primarily by fusion of the viral envelope with the host cell plasma membrane, leading to the release of the capsid into the cytosol. The capsid travels via microtubule-mediated retrograde transport to the nuclear membrane, where the viral DNA is released for replication in the nucleus. In the present study, the composition and kinetics of incoming HSV-1 capsids during entry and retrograde transport in axons of human fetal and dissociated rat dorsal root ganglia (DRG) neurons were examined by wide-field deconvolution microscopy and transmission immunoelectron microscopy (TIEM). We show that HSV-1 tegument proteins, including VP16, VP22, most pUL37, and some pUL36, dissociated from the incoming virions. The inner tegument proteins, including pUL36 and some pUL37, remained associated with the capsid during virus entry and transit to the nucleus in the neuronal cell body. By TIEM, a progressive loss of tegument proteins, including VP16, VP22, most pUL37, and some pUL36, was observed, with most of the tegument dissociating at the plasma membrane of the axons and the neuronal cell body. Further dissociation occurred within the axons and the cytosol as the capsids moved to the nucleus, resulting in the release of free tegument proteins, especially VP16, VP22, pUL37, and some pUL36, into the cytosol. This study elucidates ultrastructurally the composition of HSV-1 capsids that encounter the microtubules in the core of human axons and the complement of free tegument proteins released into the cytosol during virus entry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372220 | PMC |
http://dx.doi.org/10.1128/JVI.07016-11 | DOI Listing |
Viruses
December 2024
Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations.
View Article and Find Full Text PDFPoult Sci
December 2024
Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
Duck plague (DP), which is caused by duck plague virus (DPV), is an infectious disease that severely harms the waterfowl breeding industry. The UL14 protein (pUL14) is a tegument protein encoded by the UL14 gene, which is located in the unique long (UL) region of the DPV genome. DPV pUL14 plays a crucial role in viral replication, likely by interacting with host and viral proteins that have yet to be identified.
View Article and Find Full Text PDFJ Helminthol
December 2024
Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India.
Schistosomosis in animals due to significantly burdens India's livestock economy because of high prevalence and morbidity and is mostly underdiagnosed from the lack of sensitive tools for field-level detection. This study aimed to clone, express the 22.6-kDa tegument protein of (rSs22.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Unlabelled: Herpesviruses carry an assortment of proteins in the interstitial space between the capsid and membrane envelope, collectively referred to as the tegument. Upon virion fusion with a cell, envelope integrity is disrupted, and many tegument constituents disperse into the cytosol to carry out individual effector functions, while others direct transport of the capsid to the nucleus. To gain insight into the tegument dynamics that occur with disruption of envelope integrity, we used a combination of single-particle fluorescence and biochemical approaches that leveraged the previously established use of n-ethylmaleimide to inhibit virion dynamics.
View Article and Find Full Text PDFParasitol Res
November 2024
Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Bioresources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
Sparganosis is a parasitic zoonotic disease that poses a serious threat to public hygiene and human health. Annexin is a phospholipid-binding protein with calcium ion binding activity, serving various important functions, including interaction with the parasite and regulation of the host's immune response. In this study, two annexin (ANX) family genes, Spirometra erinaceieuropaei (S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!