FIVM has provided many insights into the regulation of immunity. We report the validation of an approach for visualizing murine small bowel via single- and multiphoton FIVM. Tissue damage is limited to ∼200 μm, immediately adjacent to the incision, as confirmed by intravital PI staining. Treatment with 10 KDa dextran-FITC and 70 KDa dextran-TR confirms that perfusion is intact. Selective filtration of 10 KDa but not 70 KDa dextran from the blood indicated that kidney function is also intact. Interestingly, lamina propria vasculature is semipermeable to 10 KDa dextran. Next, reporter mice expressing egfp from the CX3CR1 locus, egfp from the FoxP3 locus, or RFP from the IL-17F locus were used to track DC subsets, FoxP3(+) Tregs, or Th17f cells, respectively. Resident cx3cr1(+/egfp) cells were sessile but actively probed the surrounding microenvironment. Both T cell populations patrol the lamina propria, but the Th17f cells migrate more rapidly than Tregs. Together, these data demonstrate intact vascular perfusion, while intravitally visualizing the mucosal surface of the small bowel. Lastly, the cx3cr1(+) DCs and T cells display activity similar to that found in steady-state, secondary lymphoid organs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427606 | PMC |
http://dx.doi.org/10.1189/jlb.0711344 | DOI Listing |
ACS Chem Neurosci
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
Targeted cell ablation is a powerful strategy for investigating the function of individual neurons within neuronal networks. Multiphoton ablation technology by a tightly focused femtosecond laser, with its significant advantages of noninvasiveness, high efficiency, and single-cell resolution, has been widely used in the study of neuroscience. However, the firing activity of the ablated neuron and its impact on the surrounding neurons and entire neuronal ensembles are still unclear.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Micromodification in bulk undoped polymethylmethacrylate (PMMA) by single focused (numerical aperture (NA) = 0.25), 1030-nm 250-fs laser pump pulses was explored by pump self-transmittance; optical, 3D-scanning confocal photoluminescence (PL); Raman micro-spectroscopy; and optical polarimetric and interferometric microscopy. Starting from the threshold pulse energy = 0.
View Article and Find Full Text PDFAdv Funct Mater
October 2024
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
Traditional deep fluorescence imaging has primarily focused on red-shifting imaging wavelengths into the near-infrared (NIR) windows or implementation of multi-photon excitation approaches. Here, we combine the advantages of NIR and multiphoton imaging by developing a dual-infrared two-photon microscope to enable high-resolution deep imaging in biological tissues. We first computationally identify that photon absorption, as opposed to scattering, is the primary contributor to signal attenuation.
View Article and Find Full Text PDFLab Invest
December 2024
Department of Pathology, China-Japan Friendship Hospital, Beijing, China. Electronic address:
Interstitial lung disease (ILD), characterized by inflammation and fibrosis, often suffers from low diagnostic accuracy and consistency. Traditional hematoxylin and eosin (H&E) staining primarily reveals cellular inflammation with limited detail on fibrosis. To address these issues, we introduce a pioneering label-free quantitative multiphoton fiber histology (MPFH) technique that delineates the intricate characteristics of collagen and elastin fibers for ILD diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!