Many enveloped viruses, including herpes viruses, hepatitis B virus (HBV), and hepatitis C virus (HCV), and human immunodeficiency virus (HIV), are among the most important human pathogens and are often responsible for coinfections involving ≥2 types of viruses. However, therapies that are effective against multiple virus classes are rare. Here we present a new class of synthetic anti-lipopolysaccharide peptides (SALPs) that bind to heparan sulfate moieties on the cell surface and inhibit infection with a variety of enveloped viruses. We demonstrate that SALPs inhibit entry of human immunodeficiency virus type 1 (HIV-1), herpes simplex virus (HSV) 1 and 2, HBV, and HCV to their respective host cells. Despite their high antiviral efficiency, SALPs were well tolerated, and neither toxicity nor measurable inhibitor-induced adverse effects were observed. Since these broad-spectrum antiviral peptides target a host cell rather than a viral component, they may also be useful for suppression of viruses that are resistant to antiviral drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jis273DOI Listing

Publication Analysis

Top Keywords

class synthetic
8
entry human
8
enveloped viruses
8
hepatitis virus
8
human immunodeficiency
8
immunodeficiency virus
8
viruses
6
virus
6
synthetic peptide
4
peptide inhibitors
4

Similar Publications

Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces.

Sci China Life Sci

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.

Since their discovery, CRISPR/Cas systems have significantly expanded the genetic toolbox, aiding in the exploration and enhanced production of natural products across various microbes. Among these, class 2 CRISPR/Cas systems are simpler and more broadly used, but they frequently fail to function effectively in many Streptomyces strains. In this study, we present an engineered class 1 type I CRISPR/Cas system derived from Streptomyces avermitilis, which enables efficient gene editing in phylogenetically distant Streptomyces strains.

View Article and Find Full Text PDF

Background: Xanthene derivatives are a notable class of heterocyclic compounds widely studied for their significant biological impact. These molecules, found in both natural and synthetic forms, have attracted substantial scientific interest due to their broad spectrum of biological activities. The xanthene nucleus, in particular, is associated with a range of potential pharmaceutical properties, including antibacterial, antiviral, antiinflammatory, anticancer, and antioxidant effects.

View Article and Find Full Text PDF

Multiclass Synthetic Accessibility Prediction.

J Chem Inf Model

January 2025

X-Chem Global HQ, 100 Beaver Street, Waltham, Massachusetts 02453, United States.

Evaluating synthetic accessibility of molecules is an integral component of the drug discovery process. While the application of machine learning models to predict whether small molecules are easy or hard to synthesize has gained attention recently, predetermined thresholds and data set imbalances present challenges for these binary classification approaches. In this study, we introduce a novel multiclass fold-ensembled classification approach to predict the minimum number of steps needed to synthesize a small molecule.

View Article and Find Full Text PDF

Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.

View Article and Find Full Text PDF

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!