We hypothesized that CD4(+)CD25(hi)FoxP3(+) regulatory T cells (Tregs) could be involved in the high immune activation existing in patients with low-level CD4 T-cell repopulation under suppressive high active antiretroviral therapy (hereafter, "LLR patients"). Sixteen LLR patients, 18 human immunodeficiency virus (HIV)-infected controls (hereafter, "HIV controls"), and 16 healthy subjects were included. The frequency of CD4(+)CD25(hi)FoxP3(+) and HIV-specific Treg suppressive function were assessed. Relationships between Treg and CD4/CD8 activation (HLA-DR/CD38) and the frequency of naive CD4 T-cells were assessed. Low-level patients showed a higher Treg frequency but reduced HIV-specific immunosuppressive functions than HIV controls. Whereas in healthy subjects a strong negative correlation between Tregs and activated CD8 T cells emerged (r = -0.75, P < .001), it appeared disrupted in both HIV-infected groups (r = -0.06 and P = .83 for LLR patients; r = -0.11 and P = .68 for and HIV controls). Nevertheless, in LLR patients, Tregs negatively correlated with naive CD4 T cells (r = -0.60, P = .01), whereas there was no such correlation in HIV controls (r = -0.19, P = .46) or healthy subjects (r = -0.10, P = .73). Remarkably, a higher ratio of Tregs to naive CD4 T cells was observed in LLR patients than in HIV controls (P = .001) and healthy subjects (P < .001). We conclude that LLR patients have important alterations in immunoregulation involving CD4(+)CD25(hi)FoxP3(+) Tregs. In this scenario, the role of Tregs seems to be more related to the control of the naive CD4 T-cell homeostatic proliferation, rather than to the immune activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/infdis/jis230 | DOI Listing |
ACS Nano
January 2025
Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.
View Article and Find Full Text PDFJB JS Open Access
January 2025
Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky.
Background: Therapies for cartilage restoration are of great interest, but current options provide limited results. In salamanders, interzone (IZN) tissue can regenerate large joint lesions. The mammalian homolog to this tissue exists during fetal development and exhibits remarkable chondrogenesis in vitro.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Department of Oncology, Zhangjiagang First People's Hospital, Suzhou 215600, Jiangsu Province, China.
Background: Owing to the absence of specific symptoms in early-stage gastric cancer, most patients are diagnosed at intermediate or advanced stages. As a result, treatment often shifts from surgery to other therapies, with chemotherapy and targeted therapies being the primary options for advanced gastric cancer treatment.
Aim: To investigate both treatment efficacy and immune modulation.
ACS Pharmacol Transl Sci
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup, Assam 781101, India.
Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.
Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!