Studies on the digestive secretions in aquatic animals can elucidate certain aspects of their nutritive physiology. The aim of the present study was to compare the digestive lipase and phospholipase activities in ten marine species belonging to four classes following the taxonomic classification of marine organisms. All aquatic digestive tissues tested are equipped with lipase and phospholipase activities, assuming the hydrolysis of fat-rich food. The lipolytic activities determined in the pancreases of cartilaginous fishes were greater than those in bony fishes, molluscs and crustaceans. This finding might be explained by the strong digestive utilization of fat-rich macronutrients by these carnivorous fishes. A trend of activities and stabilities at different pH and temperatures for crude lipases and phospholipases from these aquatic animals suggests that the optimum pH and temperature for marine lipases are species dependent. Interestingly, the sardine caecal lipase and phospholipase were found to be mostly stable in a broad range of acidic pH values. The maximum activities of lipolytic enzymes from the hepatopancreases of Hexaplex trunculus (molluscs) and Carcinus mediterranus (crustaceans) were found to be 50 and 60 °C, respectively, whereas the optimal temperature of lipolytic enzymes for the other species was classically around 40 °C. Thermoactivity of molluscs' lipolytic preparations makes them potential candidates in industrial applications. Among digestive glands studied, only pancreas (cartilaginous fish) contained the classically known colipase. Regarded as the most primitive living jawed vertebrates, cartilaginous fishes represented by sharks and rays could be considered as the oldest vertebrates possessing a complex digestive system like that of mammals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-012-9633-1 | DOI Listing |
Metab Brain Dis
January 2025
Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA.
α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico.
Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA 48202. Electronic address:
The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD).
View Article and Find Full Text PDFGut Liver
January 2025
Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore.
Metabolic dysfunction-associated steatotic liver disease (MASLD), is the most common cause of liver disease, and its burden on health systems worldwide continues to rise at an alarming rate. MASLD is a complex disease in which the interactions between susceptible genes and the environment influence the disease phenotype and severity. Advances in human genetics over the past few decades have provided new opportunities to improve our understanding of the multiple pathways involved in the pathogenesis of MASLD.
View Article and Find Full Text PDFNutrients
December 2024
Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!