Recombinant human cyclooxygenase 1 (COX-1) was expressed from stably-transfected Drosophila melanogaster S2 (S2) cells. DMSO improved the expression of recombinant COX-1 by 180 %. DMSO increased the expression of nitric oxide synthase (NOS) at both the RNA and protein levels; NOS expression was closely correlated with the synthesis of recombinant COX-1 mRNA in stably-transfected S2 cells. DMSO also induced the gene encoding Kr-h1 which binds to the CACCC element of the metallothionein promoter to enhance the expression of recombinant COX-1. Therefore, DMSO improves the expression of recombinant COX-1 via NOS and/or the transcription factor Kr-h1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10529-012-0911-x | DOI Listing |
ACS Synth Biol
January 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.
RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.
View Article and Find Full Text PDFEvolution
January 2025
Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
A new species can form through hybridization between species. Hybrid speciation in animals has been intensely debated, partly because hard evidence for the process has been difficult to obtain. Here we report the discovery of a European hybrid butterfly lineage, a finding that can be considered surprising given the intense and long-term study of European butterflies.
View Article and Find Full Text PDFVet Res Commun
January 2025
ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, Karnataka, 560119, India.
Sheeppox and Goatpox are highly contagious transboundary viral diseases of sheep and goats caused by Capripoxvirus, respectively. This study describes the development of indirect ELISA and its serodiagnostic potential as an alternative to the gold standard serum neutralization test (SNT). The homologue of vaccinia virus, ORF 117 (A27L) gene of the Romanian Fenner (RF) strain of Sheeppox virus (SPPV) was used for producing the full-length recombinant A27L (rA27L) protein (∼22 kDa) in a prokaryotic expression system.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!