Objective: Amygdala dysfunction has been reported to exist in youths and adults with psychopathic traits. However, there has been disagreement as to whether this dysfunction reflects a primary emotional deficit or is secondary to atypical attentional control. The authors examined the validity of the contrasting predictions.
Method: Participants were 15 children and adolescents (ages 10–17 years) with both disruptive behavior disorders and psychopathic traits and 17 healthy comparison youths. Functional MRI was used to assess the response of the amygdala and regions implicated in top-down attentional control (the dorsomedial and lateral frontal cortices) to emotional expression under conditions of high and low attentional load.
Results: Relative to youths with disruptive behavior disorders and psychopathic traits, healthy comparison subjects showed a significantly greater increase in the typical amygdala response to fearful expressions under low relative to high attentional load conditions. There was also a selective inverse relationship between the response to fearful expressions under low attentional load and the callous-unemotional component (but not the narcissism or impulsivity component) of psychopathic traits. In contrast, the two groups did not differ in the significant recruitment of the dorsomedial and lateral frontal cortices as a function of attentional load.
Conclusions: Youths with disruptive behavior disorders and psychopathic traits showed reduced amygdala responses to fearful expressions under low attentional load but no indications of increased recruitment of regions implicated in top-down attentional control. These findings suggest that the emotional deficit observed in youths with disruptive behavior disorders and psychopathic traits is primary and not secondary to increased top-down attention to nonemotional stimulus features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240145 | PMC |
http://dx.doi.org/10.1176/appi.ajp.2012.11081270 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!