Adenosine and its metabolite, inosine, have been described as molecules that participate in regulation of inflammatory response. The aim of this study was to investigate the effect of adenosine and inosine in a mouse model of carrageenan-induced pleurisy as well as the participation of adenosine receptors in this response. Injection of carrageenan into the pleural cavity induced an acute inflammatory response characterized by leukocyte migration, pleural exudation, and increased release of interleukin-1β and tumor necrosis factor-α in pleural exudates. The treatment with adenosine (0.3-100 mg/kg, i.p.) and inosine (0.1-300 mg/kg, i.p.) 30 min before carrageenan injection reduced significantly all these parameters analyzed. Our results also demonstrated that A(2A) and A(2B) receptors seem to mediate the adenosine and inosine effects observed, since pretreatment with selective antagonists of adenosine A(2A) (ZM241385) and A(2B) (alloxazine) receptors, reverted the inhibitory effects of adenosine and inosine in pleural inflammation. The involvement of A(2) receptors was reinforced with adenosine receptor agonist CGS21680 treatment, since its anti-inflammatory effects were reversed completely and partially with ZM241385 and alloxazine injection, respectively. Moreover, the combined treatment with subeffective dose of adenosine (0.3 mg/kg) and inosine (1.0 mg/kg) induced a synergistic anti-inflammatory effect. Thus, based on these findings, we propose that inosine contributes with adenosine to exert anti-inflammatory effects in pleural inflammation, reinforcing the notion that endogenous nucleosides play an important role in controlling inflammatory diseases. This effect is likely mediated by the activation of adenosine A(2) subtype receptors and inhibition of production or release of pro-inflammatory cytokines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486164 | PMC |
http://dx.doi.org/10.1007/s11302-012-9299-2 | DOI Listing |
Food Res Int
January 2025
Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:
To meet the demand of consumers for high-quality dry-cured fish. This study investigates the relationship between microbial diversity and the changes in physicochemical properties and non-volatile flavor compounds of dry-cured Spanish mackerel (DCSM) throughout the curing process. Our findings demonstrate that moisture content significantly decreased during curing, while NaCl generally increased.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Suntory Institute for Bioorganic Research, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-Cho, Soraku-Gun, Kyoto 619-0284 Japan.
In this study, we analyzed purine derivatives using multimatrix variation matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) with α-cyano-4-hydroxycinnamic acid (CHCA), 1,5-diaminonaphtalene (DAN), 5-formylsalicylic acid (FSA), and 5-nitrosalicylic acid (NSA) as matrices. Further, we focused on the abstraction/attachment of hydrogen from/to analytes and detected [M - H], [M + 2H] and/or [M + 3H] in MALDI MS spectra of compounds containing nitrogen and/or carbonyl oxygen. Although [M - H] generation of purine compounds in MALDI MS with conventional matrices was challenging, NSA-MALDI MS effectively yielded the [M - H]species of purine derivatives compared with CHCA, FSA, and DAN, and the [M - H]/[M + H] ratios reflected their structures, such as the substituting groups and positions.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.
Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.
RNA
January 2025
Medical University of Vienna, Division of Cell & Developmental Biology, Center of Anatomy and Cell Biology
Adenosine to inosine conversion by ADARs was first identified in the late eighties of the previous century. As the conversion of adenosines to inosines can be easily detected by sequencing of cDNAs, where the presence of an inosine reads out as a guanosine, the analysis of this type of RNA-editing has become widespread. Consequently, several pipelines for detecting inosines in transcriptomes have become available.
View Article and Find Full Text PDFThe precise and unambiguous detection and quantification of internal RNA modifications represents a critical step for understanding their physiological functions. The methods of direct RNA sequencing are quickly developing allowing for the precise location of internal RNA marks. This detection is however not quantitative and still presents detection limits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!