Changes of protein profile in fresh-cut lotus tuber before and after browning.

J Agric Food Chem

Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.

Published: April 2012

Browning is a critical problem, which often limits the shelf life and marketability in fresh-cut lotus tuber. Proteome level changes in response to the browning metabolism were investigated using two-dimensional electrophoresis (2-DE) and MALDI-TOF-TOF. A total of 34 functional protein spots were identified by comparing 2-DE protein patterns of fresh-cut lotus tuber before and after browning. These 34 identified proteins could be classified into 7 functional groups based on the NCBI database, that is, material and energy metabolism (35%), stress response (20%), respiration metabolism (12%), cell structure (12%), signal transduction (6%), gene expression regulation (6%), and unclassified proteins (9%). The group with the greatest difference in protein expression was related to material metabolism and regulation, reactive oxygen species metabolism, and respiratory control. The distinct proteins included universal stress protein (USP), superoxide dismutase (SOD), peroxidase (POD), ferritin, and ATPase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf205303yDOI Listing

Publication Analysis

Top Keywords

fresh-cut lotus
12
lotus tuber
12
tuber browning
8
metabolism
5
changes protein
4
protein profile
4
profile fresh-cut
4
browning
4
browning browning
4
browning critical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!