A periodic DFT study of the activation of O2 by Au nanoparticles on α-Fe2O3.

Faraday Discuss

Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT.

Published: April 2012

Oxidation chemistry with supported Au nanoparticles as catalysts is an area of intense research. Even so there is still much discussion as to the nature of Au species generated on the complex surfaces of these catalysts and the types of oxygen species that are present. Recent experimental work has highlighted Au bi-layers with dimensions of 0.5 nm supported on iron oxide as a very efficient catalyst system for CO oxidation. This size scale implies clusters containing only 10 Au atoms, making the simulation of the nanoparticles, oxide surface and their interface amenable to perioidic density functional theory calculations. We present simulation results which demonstrate that the dissociation of O2 is energetically favourable at the interface between nanoparticle and oxide, with both surface Fe cations and Au atoms taking part in the adsorption site. Here the barrier to dissociation of O2 is found to be lower than the energy required for molecular desorption which is not the case for isolated Au clusters. This reaction also produces oxidised Au atoms, as confirmed by Bader charge analysis. For isolated clusters we show that such oxidised Au species give rise to empty d-band states, whereas molecular adsorption of O2 does not.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1fd00026hDOI Listing

Publication Analysis

Top Keywords

oxide surface
8
isolated clusters
8
periodic dft
4
dft study
4
study activation
4
activation nanoparticles
4
nanoparticles α-fe2o3
4
α-fe2o3 oxidation
4
oxidation chemistry
4
chemistry supported
4

Similar Publications

The preparation and modification of porous electrodes are an important component of the new generation electrochemical oxidation technology. Rapid preparation of porous electrodes can be easily achieved by synchronous oxygen bubble electrodeposition. However, according to the reaction mechanism of lead dioxide anodic electrodeposition, there is bound to be a competitive reaction of adsorbed hydroxyl radicals in the oxygen bubble template method, which means that synchronous OER impacts both the surface morphology and potentially the crystalline structure of the metal oxides.

View Article and Find Full Text PDF

Automated, rapid electrocatalyst discovery techniques that comprehensively address the exploration of chemical spaces, characterization of catalyst robustness, reproducibility, and translation of results to (flow) electrolysis operation are needed. Responding to the growing interest in biomass valorization, we studied the glycerol electro-oxidation reaction (GEOR) on gold in alkaline media as a model reaction to demonstrate the efficacy of such methodology introduced here. Our platform combines individually addressable electrode arrays with HardPotato, a Python application programming interface for potentiostat control, to automate electrochemical experiments and data analysis operations.

View Article and Find Full Text PDF

Partial oxidation of ethylene over silver catalysts produces more than 30 million metric tons of ethylene oxide (EO) annually. However, the form of active silver surfaces, reactive oxygen species, and dominant pathways of this chemical reaction remains controversial despite decades of research. Here, we use Raman spectroscopy and transient kinetic measurements to demonstrate that higher coverages of peroxide species, present only upon Ag oxide surfaces that form , correlate with greater selectivities to EO.

View Article and Find Full Text PDF

Chemical weathering processes play a key role in regulating the global climate over geological time scales. Lithium (Li) isotope compositions have proven to be a robust proxy for tracing weathering processes that produce secondary minerals, such as clays and oxides, with a focus often placed on Li adsorption to, or incorporation into, clay minerals. In addition, the interaction between Li and Fe-oxides has long been assumed and discussed based on field observations, but experimental constraints on this process are lacking.

View Article and Find Full Text PDF

The rapid advancement of covalent organic frameworks (COFs) in recent years has firmly established them as a new class of molecularly precise and highly tuneable porous materials. However, compared to other porous materials, such as zeolites and metal-organic frameworks, the successful integration of hierarchical porosity into COFs remains largely unexplored. The challenge lies in identifying appropriate synthetic methods to introduce secondary pores without compromising the intrinsic structural porosity of COFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!