Hemodynamics of cerebral aneurysms: computational analyses of aneurysm progress and treatment.

Comput Math Methods Med

Department of Mechanical Engineering, Myongji University, 38-2 Nam-Dong, Yongin-Si, Kyunggi-Do 449-728, Republic of Korea.

Published: July 2012

The progression of a cerebral aneurysm involves degenerative arterial wall remodeling. Various hemodynamic parameters are suspected to be major mechanical factors related to the genesis and progression of vascular diseases. Flow alterations caused by the insertion of coils and stents for interventional aneurysm treatment may affect the aneurysm embolization process. Therefore, knowledge of hemodynamic parameters may provide physicians with an advanced understanding of aneurysm progression and rupture, as well as the effectiveness of endovascular treatments. Progress in medical imaging and information technology has enabled the prediction of flow fields in the patient-specific blood vessels using computational analysis. In this paper, recent computational hemodynamic studies on cerebral aneurysm initiation, progress, and rupture are reviewed. State-of-the-art computational aneurysmal flow analyses after coiling and stenting are also summarized. We expect the computational analysis of hemodynamics in cerebral aneurysms to provide valuable information for planning and follow-up decisions for treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290806PMC
http://dx.doi.org/10.1155/2012/782801DOI Listing

Publication Analysis

Top Keywords

hemodynamics cerebral
8
cerebral aneurysms
8
cerebral aneurysm
8
hemodynamic parameters
8
computational analysis
8
aneurysm
6
computational
5
aneurysms computational
4
computational analyses
4
analyses aneurysm
4

Similar Publications

Current advances in neurocritical care.

J Intensive Med

January 2025

Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.

This review summarizes the current research advances and guideline updates in neurocritical care. For the therapy of ischemic stroke, the extended treatment time window for thrombectomy and the emergence of novel thrombolytic agents and strategies have brought greater hope for patient recovery. Minimally invasive hematoma evacuation and goal-directed bundled management have shown clinical benefits in treating cerebral hemorrhage.

View Article and Find Full Text PDF

State-dependent neurovascular modulation induced by transcranial ultrasound stimulation.

Med Biol Eng Comput

January 2025

School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China.

Previous studies reported baseline state-dependent effects on neural and hemodynamic responses to transcranial ultrasound stimulation. However, due to neurovascular coupling, neither neural nor hemodynamic baseline alone can fully explain the ultrasound-induced responses. In this study, using a general linear model, we aimed to investigate the roles of both neural and hemodynamic baseline status as well as their interactions in ultrasound-induced responses.

View Article and Find Full Text PDF

Functional near-infrared spectroscopy (fNIRS) is an increasingly popular neuroimaging technique that measures cortical hemodynamic activity in a non-invasive and portable fashion. Although the fNIRS community has been successful in disseminating open-source processing tools and a standard file format (SNIRF), reproducible research and sharing of fNIRS data amongst researchers has been hindered by a lack of standards and clarity over how study data should be organized and stored. This problem is not new in neuroimaging, and it became evident years ago with the proliferation of publicly available neuroimaging datasets.

View Article and Find Full Text PDF

Sleep entails significant changes in cerebral hemodynamics and metabolism. Yet, the way these processes evolve throughout wakefulness and sleep and their spatiotemporal dependence remain largely unknown. Here, by integrating a novel functional PET technique with simultaneous EEG-fMRI, we reveal a tightly coupled temporal progression of global hemodynamics and metabolism during the descent into NREM sleep, with large hemodynamic fluctuations emerging as global glucose metabolism declines, both of which track EEG arousal dynamics.

View Article and Find Full Text PDF

The complementary strengths of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have driven extensive research into integrating these two noninvasive modalities to better understand the neural mechanisms underlying cognitive, sensory, and motor functions. However, the precise neural patterns associated with motor functions, especially imagined movements, remain unclear. Specifically, the correlations between electrophysiological responses and hemodynamic activations during executed and imagined movements have not been fully elucidated at a whole-brain level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!