Background: Mammographic density adjusted for age and body mass index (BMI) is a heritable marker of breast cancer susceptibility. Little is known about the biologic mechanisms underlying the association between mammographic density and breast cancer risk. We examined whether common low-penetrance breast cancer susceptibility variants contribute to interindividual differences in mammographic density measures.
Methods: We established an international consortium (DENSNP) of 19 studies from 10 countries, comprising 16,895 Caucasian women, to conduct a pooled cross-sectional analysis of common breast cancer susceptibility variants in 14 independent loci and mammographic density measures. Dense and nondense areas, and percent density, were measured using interactive-thresholding techniques. Mixed linear models were used to assess the association between genetic variants and the square roots of mammographic density measures adjusted for study, age, case status, BMI, and menopausal status.
Results: Consistent with their breast cancer associations, the C-allele of rs3817198 in LSP1 was positively associated with both adjusted dense area (P = 0.00005) and adjusted percent density (P = 0.001), whereas the A-allele of rs10483813 in RAD51L1 was inversely associated with adjusted percent density (P = 0.003), but not with adjusted dense area (P = 0.07).
Conclusion: We identified two common breast cancer susceptibility variants associated with mammographic measures of radiodense tissue in the breast gland.
Impact: We examined the association of 14 established breast cancer susceptibility loci with mammographic density phenotypes within a large genetic consortium and identified two breast cancer susceptibility variants, LSP1-rs3817198 and RAD51L1-rs10483813, associated with mammographic measures and in the same direction as the breast cancer association.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569092 | PMC |
http://dx.doi.org/10.1158/1055-9965.EPI-12-0066 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China.
Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.
View Article and Find Full Text PDFInt J Clin Oncol
January 2025
Translational Research Support Section, National Cancer Center Hospital East, Chiba, Japan.
Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Istanbul University, Faculty of Science, Department of Biology, Istanbul, Türkiye.
In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!