Melanoma tumors have been shown to comprise both invasive and proliferative cell subpopulations. These populations are highly plastic, thus hampering full characterization and therapeutic targeting of dormant and partially dedifferentiated invasive cells. We have reported, previously, that melanoma cells grown in a serum-free neural crest medium, in which they propagate as spheroids, show higher invasiveness and increased immune escape. In addition, in spheroids, we showed the increased expression of several genes which are involved in pluripotency, differentiation, and invasion. We therefore proposed that these culture conditions favor the polarization of proliferative melanoma cells toward an invasive state. As plasticity may suggest a reversible polarization, the aim of this report is to assess the transient phenotype of invasive cells generated through this procedure. We provide evidence that spheroid cells mimic dormant populations, and that this phenotype is fully reversible when cells are reintroduced into culture media that contain serum in which they grow as a monolayer. We also show that most transcriptional deregulations can be reversed. To further explain this plasticity in melanoma cells, we explored the epigenetic status of four gene promoters, assuming changes in acetylation or dimethylation on histone 3. We show reversible modifications on lysine 9 and lysine 4. We propose that spheroids allow the transient polarization of melanoma cells toward enhanced dormancy, loss of differentiation, and invasiveness, thereby reproducing the properties and plasticity of invasive subpopulations in melanoma tumors. This in-vitro model will allow further characterization and targeting of melanoma invasive cell populations.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CMR.0b013e328351e7c4DOI Listing

Publication Analysis

Top Keywords

melanoma cells
20
cells
9
plasticity melanoma
8
melanoma tumors
8
invasive cells
8
melanoma
7
invasive
6
plasticity
4
cells induced
4
induced neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!