By directly simulating Maxwell's equations via the finite-difference time-domain (FDTD) method, we numerically demonstrate the possibility of achieving high-efficiency second harmonic generation (SHG) in a structure consisting of a microscale doubly-resonant ring resonator side-coupled to two adjacent waveguides. We find that ≳ 94% conversion efficiency can be attained at telecom wavelengths, for incident powers in the milliwatts, and for reasonably large bandwidths (Q ∼ 1000s). We demonstrate that in this high efficiency regime, the system also exhibits limit-cycle or bistable behavior for light incident above a threshold power. Our numerical results agree to within a few percent with the predictions of a simple but rigorous coupled-mode theory framework.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.007526DOI Listing

Publication Analysis

Top Keywords

high-efficiency second-harmonic
4
second-harmonic generation
4
generation doubly-resonant
4
doubly-resonant χ²
4
χ² microring
4
microring resonators
4
resonators directly
4
directly simulating
4
simulating maxwell's
4
maxwell's equations
4

Similar Publications

Mechanical Twisting-Induced Enhancement of Second-Order Optical Nonlinearity in a Flexible Molecular Crystal.

J Am Chem Soc

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.

Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.

View Article and Find Full Text PDF

Supramolecular Assembly Enhanced Linear and Nonlinear Chiroptical Properties of Chiral Manganese Halides.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China.

Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula.

View Article and Find Full Text PDF

High-efficiency nonlinear frequency conversion enabled by optimizing the ferroelectric domain structure in -cut LNOI ridge waveguide.

Nanophotonics

August 2024

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Photonic devices based on ferroelectric domain engineering in thin film lithium niobate are key components for both classical and quantum information processing. Periodic poling of ridge waveguide can avoid the selective etching effect of lithium niobate, however, the fabrication of high-quality ferroelectric domain is still a challenge. In this work, we optimized the applied electric field distribution, and rectangular inverted domain structure was obtained in the ridge waveguide which is beneficial for efficient nonlinear frequency conversions.

View Article and Find Full Text PDF

Second-harmonic (SH) generation is an important way to generate short-wavelength light sources. Thin-film lithium niobate (TFLN) resonators and waveguides featuring tight light confinement are flexible to realize mode- or quasi-phase-matching (MPM or QPM) and thus efficient SH generation. Here, we report an efficient SH with an absolute conversion efficiency of 45% in a reverse-polarized double-layer TFLN waveguide.

View Article and Find Full Text PDF

Interfering Josephson diode effect in TaPdTe asymmetric edge interferometer.

Nat Commun

October 2024

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

Article Synopsis
  • Edge states in topological systems are important due to their stability and unique properties, leading to the development of a superconducting-proximitized edge interferometer on the topological insulator TaPdTe.
  • This interferometer realizes the Josephson diode effect (JDE), achieving high efficiency (up to 73%) and ultra-low power consumption while operating under small magnetic fields.
  • Key features of the JDE include the presence of a second-order harmonic in the current-phase relation and antisymmetric transport, indicating the device's effectiveness for future advancements in superconducting quantum technologies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!