We demonstrate that a transparency window can be obtained within the absorptive dipole resonant regime, by slightly reducing the symmetric arrangement of a dipole-like bar grating covered by a waveguiding layer. The physical understanding is that, under the condition of reducing the grating symmetry, the lossy dipole plasmon resonance can be completely transferred into the waveguide mode in a way of destructive interference. In accompany with the tunable transparency window modulated by the symmetry-reduced displacement, an ultra high group index (slowing down the light) as well as a vortex distribution of the electromagnetic field is found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.007206 | DOI Listing |
Nanotechnology
January 2025
Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.
Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
Recently, transparent wood (TW) has been considered for many energy-efficient building products, such as windows and decorations. However, the existing TW still faces issues with size and thickness, as well as problems with functional fillers affecting the optical and mechanical properties of TW, which limits its wide application in the window products. In this study, a wood composite material (WCM) with good optical, mechanical, and thermal insulation and UV-shielding properties was prepared by using delignified wood (DW), methyl methacrylate (MMA), and 4-vinylphenylboric acid (VPBA).
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
The increasing demand for energy in cooling systems due to global warming presents a significant challenge. Conventional air-conditioning methods exacerbate climate change by contributing to heightened carbon emissions. Glass facades, renowned in modern architecture for their versatility and aesthetic appeal, inadvertently trap solar radiation, resulting in heat buildup and the greenhouse effect.
View Article and Find Full Text PDFiScience
January 2025
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi'an, Shaanxi 710119, China.
Crack pattern-based metal grid film is an ideal candidate material for transparent electromagnetic interference shielding optical windows. However, achieving crack patterns with narrow grid spacing, small wire width, and high connectivity remains challenging. Herein, an aqueous acrylic colloidal dispersion was developed as a crack precursor for preparing crack patterns.
View Article and Find Full Text PDFBiomater Sci
January 2025
National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!