A transient two-dimensional model describing degenerate four-wave mixing inside saturable gain media is presented. The new model is compared to existing one-dimensional models with their qualitative results confirmed. Large quantitative differences with respect to peak reflectivity and optimum pump fluence are observed. Furthermore, the influence of the beam focus size, the transverse position and the crossing angle on the reflectivity of the grating is investigated using the improved model. It is demonstrated that the phase conjugate reflectivity depends sensitively on the transverse features of the interacting beams with a transverse shift in the position of the pump beams yielding a threefold improvement in reflectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.006887DOI Listing

Publication Analysis

Top Keywords

saturable gain
8
gain media
8
two-dimensional modeling
4
modeling transient
4
transient gain
4
gain gratings
4
gratings saturable
4
media transient
4
transient two-dimensional
4
two-dimensional model
4

Similar Publications

Mode-locked lasers are of interest for applications such as biological imaging, nonlinear frequency conversion, and single-photon generation. In the infrared, chip-integrated mode-locked lasers have been demonstrated through integration of laser diodes with low-loss photonic circuits. However, additional challenges, such as a higher propagation loss and smaller alignment tolerances, have prevented the realization of such lasers in the visible range.

View Article and Find Full Text PDF

In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.

View Article and Find Full Text PDF

Photo-thermo-refractive (PTR) glass doped with rare-earth ions has attracted considerable attention due to its excellent linear photosensitivity and laser performance. This study investigates the nonlinear photosensitive nanocrystallization induced by ultrafast laser irradiation in Nd-doped PTR glass. Phase contrast microscopy reveals that both Gaussian and Gaussian-Bessel beams can modulate the refractive index positively or negatively, depending on specific conditions.

View Article and Find Full Text PDF

The Kerr nonlinearity allows for exact analytic soliton solutions in 1+1D. While nothing excludes that these solitons form in naturally occurring real-world 3D settings as solitary walls or stripes, their observation had previously been considered unfeasible because of the strong transverse instability intrinsic to the extended nonlinear perturbation. We report the observation of solitons that are fully compatible with the 1+1D Kerr paradigm limit hosted in a 2+1D system.

View Article and Find Full Text PDF

We report on a master oscillator power amplifier (MOPA) system at 2.8 µm to achieve an average power of 10.28 W with a pulse energy and peak power of 403 nJ and 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!