Cenococcum is a genus of ectomycorrhizal Ascomycota that has a broad host range and geographic distribution. It is not known to produce either meiotic or mitotic spores and is known to exist only in the form of hyphae, sclerotia and host-colonized ectomycorrhizal root tips. Due to its lack of sexual and asexual spores and reproductive structures, it has proven difficult to incorporate into traditional classification within Ascomycota. Molecular phylogenetic studies of ribosomal RNA placed Cenococcum in Dothideomycetes, but the definitive identification of closely related taxa remained elusive. Here we report a phylogenetic analysis of five nuclear loci (SSU, LSU, TEF1, RPB1, RPB2) of Dothideomycetes that placed Cenococcum as a close relative of the genus Glonium of Gloniaceae (Pleosporomycetidae incertae sedis) with strong statistical support. Glonium is a genus of saprobic Dothideomycetes that produces darkly pigmented, carbonaceous, hysteriate apothecia and is not known to be biotrophic. Evolution of ectomycorhizae, Cenococcum and Dothideomycetes is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3852/11-233 | DOI Listing |
Mycol Prog
April 2022
Botany Department, Faculty of Science, University of Khartoum, Khartoum, Sudan.
Perylenequinones (PQs) are aromatic polyketides with an oxidized pentacyclic core that make up a family of natural compounds. Naturally occurring PQs mostly are produced by phytopathogenic fungi, with few aphides, crinoids, and plants. PQs, also known as photosensitizers, absorb light energy which empowers them to produce reactive oxygen species that damage host cells.
View Article and Find Full Text PDFFront Microbiol
February 2018
Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland.
is an ectomycorrhizal fungus with global distribution in numerous habitats and associates with a large range of host species including gymnosperm and angiosperm trees. Moreover, is the unique ectomycorrhizal species within the clade Dothideomycetes, the largest class of Ascomycetes containing predominantly saprotrophic and many devastating phytopathogenic fungi. Recent studies highlight that mycorrhizal fungi, as pathogenic ones, use effectors in form of Small Secreted Proteins (SSPs) as molecular keys to promote symbiosis.
View Article and Find Full Text PDFNat Commun
September 2016
INRA, UMR INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France.
The most frequently encountered symbiont on tree roots is the ascomycete Cenococcum geophilum, the only mycorrhizal species within the largest fungal class Dothideomycetes, a class known for devastating plant pathogens. Here we show that the symbiotic genomic idiosyncrasies of ectomycorrhizal basidiomycetes are also present in C. geophilum with symbiosis-induced, taxon-specific genes of unknown function and reduced numbers of plant cell wall-degrading enzymes.
View Article and Find Full Text PDFMycorrhiza
August 2016
Department of Plant Pathology, University of Florida, 2517 Fifield Hall, Gainesville, FL, 32611-0680, USA.
The fungus Cenococcum geophilum Fr. (Dothideomycetes, Ascomycota) is one of the most common ectomycorrhizal fungi in boreal to temperate regions. A series of molecular studies has demonstrated that C.
View Article and Find Full Text PDFFEMS Microbiol Ecol
December 2014
Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
The ectomycorrhizal fungus Cenococcum geophilum (Ascomycota, Dothideomycetes) forms black, round to irregular sclerotia in forest soils. Fungi that colonize the sclerotia appear to affect sclerotia viability and may play an important role in the life history of Cenococcum. Some of the fungi could also affect nutrient cycling by decomposing Cenococcum sclerotia, which are melanized and recalcitrant to decay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!