A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Theoretical analysis of the kinetic performance of laboratory- and full-scale composting systems. | LitMetric

Theoretical analysis of the kinetic performance of laboratory- and full-scale composting systems.

Waste Manag Res

Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Caparica, Portugal.

Published: July 2012

Composting research at laboratory-scale is critical for the development of optimized full-scale plants. Discrepancies between processes at laboratory-scale and full-scale systems have been investigated in terms of heat balances, but a kinetic analysis of this issue is still missing. In this study, the composting rate at laboratory-scale was, on average, between 1.9 and 5.7 times faster than in full-scale systems for a set of published studies using municipal solid waste, food waste or similar materials. Laboratory-scale performance and full-scale systems were limited to 71 and 46%, respectively, of their maximum potential due to poor management of environmental process conditions far from their optimum. The main limiting environmental factor was found to be moisture content, followed by temperature. Besides environmental factors, waste composition and particle size were identified as factors accounting for kinetic differences between laboratory- and full-scale systems. Overall, this study identifies those factors that affect the kinetics of the composting process most and revealed a significant margin for reducing process time in full-scale composting.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0734242X11433528DOI Listing

Publication Analysis

Top Keywords

full-scale systems
16
laboratory- full-scale
8
full-scale composting
8
full-scale
7
composting
5
systems
5
theoretical analysis
4
analysis kinetic
4
kinetic performance
4
performance laboratory-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!