Lateralized reward-related visual discrimination in the avian entopallium.

Eur J Neurosci

Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.

Published: April 2012

In humans and many other animals, the two cerebral hemispheres are partly specialized for different functions. However, knowledge about the neuronal basis of lateralization is mostly lacking. The visual system of birds is an excellent model in which to investigate hemispheric asymmetries as birds show a pronounced left hemispheric advantage in the discrimination of various visual objects. In addition, visual input crosses at the optic chiasm and thus testing of each hemisphere is easily accomplished. We aimed to find a neuronal correlate for three hallmarks of visual lateralization in pigeons: first, the animals learn faster with the right eye-left hemisphere; second, they reach higher performance levels under this condition; third, visually guided behavior is mostly under left hemisphere control. To this end, we recorded from the left and right forebrain entopallium while the animals performed a colour discrimination task. We found that, even before learning, left entopallial neurons were more responsive to visual stimulation. Subsequent discrimination acquisition recruited more neuronal responses in the left entopallium and these cells showed a higher degree of differentiation between the rewarded and the unrewarded stimulus. Thus, differential left-right responses are already present, albeit to a modest degree, before learning. As soon as some cues are associated with reward, however, this asymmetry increases substantially and the higher discrimination ratio of the left hemispheric tectofugal pathway would not only contribute to a higher performance of this hemisphere but could thereby also result in a left hemispheric dominance over downstream motor structures via reward-associated feedback systems.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2012.08049.xDOI Listing

Publication Analysis

Top Keywords

left hemispheric
12
higher performance
8
left
7
visual
6
discrimination
5
lateralized reward-related
4
reward-related visual
4
visual discrimination
4
discrimination avian
4
avian entopallium
4

Similar Publications

Objectives: Most human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates.

View Article and Find Full Text PDF

Background Hemimegalencephaly (HME) is a rare congenital disorder that is initiated during embryonic development with abnormal growth of one hemisphere. Tuberous sclerosis complex (TSC), a genetic disorder, is rarely associated with HME. Methods We present a case of a newborn with HME with a confirmed mutation in the TSC-1 gene and describe the clinical course, findings on (amplitude integrated) electroencephalography (aEEG), cranial ultrasound (CUS), MRI, and the postmortem evaluation.

View Article and Find Full Text PDF

An analysis of the handedness of the four members of the British rock band The Beatles is presented. Implications for the roles of the left and right hands in the playing of different musical instruments, for the roles of the left versus right hemispheres in song writing, and for the Beatle's legacy in popular culture are discussed.

View Article and Find Full Text PDF

Objective: Unilateral spatial neglect (USN) following right hemisphere stroke is more pronounced, severe, and persistent than in the left hemisphere. However, the pathophysiological mechanisms underlying USN remain largely unknown. This study aims to investigate the relationship between the fractional amplitude of low-frequency fluctuations (fALFF) in the right hemisphere of patients with post-stroke USN and the severity of neglect using resting-state functional near-infrared spectroscopy (fNIRS) technology.

View Article and Find Full Text PDF

EEG reveals key features of binocular color fusion and rivalry.

Brain Cogn

January 2025

School of Information Science and Technology, Yunnan Normal University, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China. Electronic address:

Differences in the brain sensitivity to color responses may cause significant differences in the latency and amplitude of the electroencephalographic (EEG) component. This paper investigated the electroencephalography features of binocular color fusion and binocular color rivalry when watching stereoscopic three-dimensional (3D) displays. EEG experiments were conducted on a conventional 3D display platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!