The cationic peptide [KIGAKI](3) was designed as an amphiphilic β-strand and serves as a model for β-sheet aggregation in membranes. Here, we have characterized its molecular conformation, membrane alignment, and dynamic behavior using solid-state (19)F NMR. A detailed structure analysis of selectively (19)F-labeled peptides was carried out in oriented DMPC bilayers. It showed a concentration-dependent transition from monomeric β-strands to oligomeric β-sheets. In both states, the rigid (19)F-labeled side chains project straight into the lipid bilayer but they experience very different mobilities. At low peptide-to-lipid ratios ≤1:400, monomeric [KIGAKI](3) swims around freely on the membrane surface and undergoes considerable motional averaging, with essentially uncoupled φ/ψ torsion angles. The flexibility of the peptide backbone in this 2D plane is reminiscent of intrinsically unstructured proteins in 3D. At high concentrations, [KIGAKI](3) self-assembles into immobilized β-sheets, which are untwisted and lie flat on the membrane surface as amyloid-like fibrils. This is the first time the transition of monomeric β-strands into oligomeric β-sheets has been characterized by solid-state NMR in lipid bilayers. It promises to be a valuable approach for studying membrane-induced amyloid formation of many other, clinically relevant peptide systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja301328fDOI Listing

Publication Analysis

Top Keywords

solid-state 19f
8
19f nmr
8
transition monomeric
8
monomeric β-strands
8
β-strands oligomeric
8
oligomeric β-sheets
8
membrane surface
8
self-assembly flexible
4
flexible β-strands
4
β-strands immobile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!