A systematic ab initio study of the linear, nonlinear optical susceptibilities, and hyperpolarizability of noncentrosymmetric-monoclinic 2,4-dihydroxyl hydrazone isomorphic crystals (DHNPH) within density functional theory in the local density approximation (LDA), general gradient approximation (GGA), the Engel-Vosko generalized gradient approximation (EV-GGA) and modified Becke-Johnson potential (mBJ) has been performed. The complex dielectric susceptibility dispersion, its zero-frequency limit and the birefringence are studied. Using scissors’ corrected mBJ we find a large uniaxial dielectric anisotropy (-0.56) resulting in a significant birefringence (0.61). We also find that 2,4- DHNPH possess large second harmonic generation. The calculated second order susceptibility tensor components for the static limit |χ(111)(2)(0)| and |χ(111)(2)(ω)| at λ=1.9 μm (0.651 eV) and at λ = 1.064 μm (1.165 eV) are 53, 91, and 209 pm/V, respectively. A remarkable finding, applying the scissors’ correction has a profound effect on value, magnitude and sign of χ(ijk)(2)(ω). In additional we have calculated the microscopic hyperpolarizability, β(111), vector component along the principal dipole moment directions for the dominant component. We find that the value of β(111) equal to 47× 10(-30) esu, in good agreement with the measured value (48.2× 10(-30) esu).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp3003036DOI Listing

Publication Analysis

Top Keywords

nonlinear optical
12
24-dihydroxyl hydrazone
8
hydrazone isomorphic
8
isomorphic crystals
8
linear nonlinear
8
optical susceptibilities
8
susceptibilities hyperpolarizability
8
gradient approximation
8
10-30 esu
8
acentric nonlinear
4

Similar Publications

Real-Time Quantification of Gas Leaks Using a Snapshot Infrared Spectral Imager.

Sensors (Basel)

January 2025

Department of Optical Engineering, Utsunomiya University, 7-2-1 Yoto, Utsunomiya 321-8585, Japan.

We describe the various steps of a gas imaging algorithm developed for detecting, identifying, and quantifying gas leaks using data from a snapshot infrared spectral imager. The spectral video stream delivered by the hardware allows the system to combine spatial, spectral, and temporal correlations into the gas detection algorithm, which significantly improves its measurement sensitivity in comparison to non-spectral video, and also in comparison to scanning spectral imaging. After describing the special calibration needs of the hardware, we show how to regularize the gas detection/identification for optimal performance, provide example SNR spectral images, and discuss the effects of humidity and absorption nonlinearity on detection and quantification.

View Article and Find Full Text PDF

Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.

View Article and Find Full Text PDF

Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber.

Micromachines (Basel)

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.

A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.

View Article and Find Full Text PDF

Radio photonic technologies have emerged as a promising solution for addressing microwave frequency synthesis challenges in current and future communication and sensing systems. One particularly effective approach is the optoelectronic oscillator (OEO), a simple and cost-effective electro-optical system. The OEO can generate microwave signals with low phase noise and high oscillation frequencies, often outperforming traditional electrical methods.

View Article and Find Full Text PDF

A Review of Optical Interferometry for High-Precision Length Measurement.

Micromachines (Basel)

December 2024

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.

Optical interferometry has emerged as a cornerstone technology for high-precision length measurement, offering unparalleled accuracy in various scientific and industrial applications. This review provides a comprehensive overview of the latest advancements in optical interferometry, with a focus on grating and laser interferometries. For grating interferometry, systems configurations ranging from single-degree- to multi-degree-of-freedom are introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!