A large body of literature provides compelling evidence for the role of evolutionarily conserved core histone residues in various biological processes. However, site-directed mutagenesis of individual residues that are known to be sites of posttranslational modifications often does not result in clear phenotypic defects. In some cases, the combination of multiple mutations can give rise to stronger phenotypes, implying functional redundancy between distinct residues on histones. Here, we examined the "histone redundancy hypothesis" by characterizing double deletion of all pairwise combinations of amino-terminal tails (N-tails) from the four core histones encoded in budding yeast. First, we found that multiple lysine residues on the N-tails of both H2A and H4 are redundantly involved in cell viability. Second, simultaneous deletion of N-tails from H2A and H3 leads to a severe growth defect, which is correlated with perturbed gross chromatin structure in the mutant cells. Finally, by combining point mutations on H3 with deletion of the H2A N-tail, we revealed a redundant role for lysine 4 on H3 and the H2A N-tail in hydroxyurea-mediated response. Altogether, these data suggest that the N-tails of core histones share previously unrecognized, potentially redundant functions that, in some cases are different from those of the widely accepted H2A/H2B and H3/H4 dimer pairs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326485PMC
http://dx.doi.org/10.1073/pnas.1203453109DOI Listing

Publication Analysis

Top Keywords

pairwise combinations
8
amino-terminal tails
8
functional redundancy
8
budding yeast
8
n-tails core
8
core histones
8
n-tails h2a
8
h2a n-tail
8
mutagenesis pairwise
4
combinations histone
4

Similar Publications

The impact of anti-infective therapy on patients undergoing warfarin treatment.

J Infect Dev Ctries

December 2024

Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Introduction: The combination of antibiotics and warfarin is used frequently in clinical practice. However, the impact of this combination on the anticoagulant efficacy of warfarin remains uncertain, posing challenges to clinical decision-making. This study aimed to evaluate the influence of various antibiotics on the international normalized ratio (INR) values in hospitalized patients who were concurrently administered warfarin.

View Article and Find Full Text PDF

Background: Cognitive behavior therapy (CBT) has been shown to be effective in improving depression in patients with cancer. However, diversity exists in the CBT delivery formats, and the optimal delivery format remains unconfirmed.

Objectives: To compare the efficacy of different delivery formats of CBT interventions on depression in patients with cancer.

View Article and Find Full Text PDF

This paper proposes a detailed process for SV calling that permits a data-driven assessment of multiple SV callers that uses both genome assemblies and long-reads. The process is implemented as a software pipeline named Structural Variant - Jaccard Index Measure, or SVJIM, using the Snakemake [20] workflow management system. Like most state-of-the-art SV callers, SV-JIM detects the presence of variations between pairs of genomes, but it streamlines the numerous SV calling stages into a single process for user convenience and evaluates the multiple SV sets produced using the Jaccard index measure to identify those with the highest consistency among the included SV callers.

View Article and Find Full Text PDF

Quantifying how co-acting global change factors (GCFs) influence plant invasion is crucial for predicting future invasion dynamics. We did a meta-analysis to assess pairwise effects of five GCFs (elevated CO, drought, eutrophication, increased rainfall and warming) on native and alien plants. We found that alien plants, compared to native plants, suffered less or benefited more for four of the eight pairwise GCF combinations, and that all GCFs acted additively.

View Article and Find Full Text PDF

Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.

Invest Radiol

January 2025

From the Department of Radiology, Stanford University, Stanford, CA (K.W., M.J.M., A.M.L., A.B.S., A.J.H., D.B.E., R.L.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (K.W.); GE HealthCare, Houston, TX (X.W.); GE HealthCare, Boston, MA (A.G.); and GE HealthCare, Menlo Park, CA (P.L.).

Objectives: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!