Deletion of Runx1 in adult mice produces a myeloproliferative phenotype. We now find that Runx1 gene deletion increases marrow monocyte while reducing granulocyte progenitors and that exogenous RUNX1 rescues granulopoiesis. Deletion of Runx1 reduces Cebpa mRNA in lineage-negative marrow cells and in granulocyte-monocyte progenitors or common myeloid progenitors. Pu.1 mRNA is also decreased, but to a lesser extent. We also transduced marrow with dominant-inhibitory RUNX1a. As with Runx1 gene deletion, RUNX1a expands lineage-Sca-1+c-kit+ and myeloid cells, increased monocyte CFUs relative to granulocyte CFUs, and reduced Cebpa mRNA. Runx1 binds a conserved site in the Cebpa promoter and binds 4 sites in a conserved 450-bp region located at +37 kb; mutation of the enhancer sites reduces activity 6-fold in 32Dcl3 myeloid cells. Endogenous Runx1 binds the promoter and putative +37 kb enhancer as assessed by ChIP, and RUNX1-ER rapidly induces Cebpa mRNA in these cells, even in cycloheximide, consistent with direct gene regulation. The +37 kb region contains strong H3K4me1 histone modification and p300-binding, as often seen with enhancers. Finally, exogenous C/EBPα increases granulocyte relative to monocyte progenitors in Runx1-deleted marrow cells. Diminished CEBPA transcription and consequent impairment of myeloid differentiation may contribute to leukemic transformation in acute myeloid leukemia cases associated with decreased RUNX1 activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362359PMC
http://dx.doi.org/10.1182/blood-2011-12-397091DOI Listing

Publication Analysis

Top Keywords

cebpa mrna
12
runx1
9
reduces cebpa
8
cebpa transcription
8
enhancer sites
8
granulopoiesis deletion
8
deletion runx1
8
runx1 gene
8
gene deletion
8
marrow cells
8

Similar Publications

Discovery of a potent PROTAC degrader for RNA demethylase FTO as antileukemic therapy.

Acta Pharm Sin B

December 2024

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.

View Article and Find Full Text PDF

Background: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.

View Article and Find Full Text PDF

Tumor-derived CCL15 regulates RNA mA methylation in cancer-associated fibroblasts to promote hepatocellular carcinoma growth.

Cancer Lett

December 2024

Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China. Electronic address:

Hepatocellular carcinoma (HCC) is a lethal malignancy characterized by rapid growth. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) significantly influences HCC progression. CCL15, a CC chemokine family member, is predominantly expressed in HCC and strongly correlates with tumor size, indicating its critical role in HCC growth.

View Article and Find Full Text PDF

Basophils and mast cells (MCs) play an important role in immune responses against allergens and parasitic infection. To elucidate the mechanisms that determine the commitment between basophils and mast cell (MCs), transcription factors and epigenetic modifications regulating the gene expression of basophil-specific enzymes, Mcpt8 and Mcpt11, were analyzed using bone marrow-derived (BM) cells containing basophils and MCs. Knockdown (KD) and overexpression experiments revealed that the transcription factor C/EBPα positively regulated the gene expression of Mcpt8 and Prss34 (encoding Mcpt11).

View Article and Find Full Text PDF

The transcription factor CCAAT enhancer binding protein alpha (C/EBPα) is a master regulator of myelopoiesis. encodes a long (p42) and a truncated (p30) protein isoform from a single mRNA. Mutations that abnormally enhance expression of p30 are associated with acute myelogenous leukemia (AML).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!