Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients.

Pharmacogenomics J

Arthritis Research UK Epidemiology Unit, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK.

Published: June 2013

We investigated the effect of single-nucleotide polymorphisms (SNPs) spanning 10 methotrexate (MTX) pathway genes, namely AMPD1, ATIC, DHFR, FPGS, GGH, ITPA, MTHFD1, SHMT1, SLC19A1 (RFC) and TYMS on the outcome of MTX treatment in a UK rheumatoid arthritis (RA) patient cohort. Tagging SNPs were selected and genotyping was performed in 309 patients with predefined outcomes to MTX treatment. Of the 129 SNPs tested, 11 associations were detected with efficacy (P-trend 0.05) including four SNPs in the ATIC gene (rs12995526, rs3821353, rs7563206 and rs16853834), six SNPs in the SLC19A1 gene region (rs11702425, rs2838956, rs7499, rs2274808, rs9977268 and rs7279445) and a single SNP within the GGH gene (rs12681874). Five SNPs were significantly associated with adverse events; three in the DHFR gene (rs12517451, rs10072026, and rs1643657) and two of borderline significance in the FPGS gene. The results suggest that genetic variations in several key MTX pathway genes may influence response to MTX in the RA patients. Further studies will be required to validate these findings and if confirmed these results could contribute towards a better understanding of and ability to predict MTX response in RA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5604731PMC
http://dx.doi.org/10.1038/tpj.2012.7DOI Listing

Publication Analysis

Top Keywords

pathway genes
12
treatment rheumatoid
8
rheumatoid arthritis
8
mtx pathway
8
mtx treatment
8
snps
6
mtx
6
gene
5
genetic polymorphisms
4
polymorphisms key
4

Similar Publications

From Genetic Findings to new Intestinal Molecular Targets in Lipid Metabolism.

Curr Atheroscler Rep

January 2025

Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.

Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.

View Article and Find Full Text PDF

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!