The structure, stability, gas sorption properties and luminescence behaviour of a new lanthanide-phosphine oxide coordination material are reported. The polymer PCM-15 is based on Tb(III) and tris(p-carboxylated) triphenylphosphine oxide and has a 5,5-connected net topology. It exhibits an infinite three-dimensional structure that incorporates an open, two-dimensional pore structure. The material is thermally robust and remains crystalline under high vacuum at 150 °C. When desolvated, the solid has a CO(2) BET surface area of 1187 m(2) g(-1) and shows the highest reported uptake of both O(2) and H(2) at 77 K and 1 bar for a lanthanide-based coordination polymer. Isolated Tb(III) centres in the as-synthesized polymer exhibit moderate photoluminescence. However, upon removal of coordinated OH(2) ligands, the luminescence intensity was found to approximately double; this process was reversible. Thus, the Tb(III) centre was used as a probe to detect directly the desolvation and resolvation of the polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt30138e | DOI Listing |
Small
January 2025
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Liaoning, Dalian, 116024, China.
Membrane technology has been explored for separating helium from hydrogen in natural gas reservoirs, a process that remains extremely challenging due to the sub-Ångstrom size difference between H and He molecules. Reverse-selective H/He separation membranes offer multiple advantages over conventional helium-selective membranes, which, however, suffer from low H/He selectivity. To address this hurdle, a novel approach is proposed to tune the ultra-micropores of carbon molecular sieves (CMS) membranes through fluorination of the polymer precursor.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Limerick, Chemical Sciences, IRELAND.
Guest transport through discrete voids (closed pores) in crystalline solids is poorly understood. Herein, we report the gas sorption properties of a nonporous coordination network, [Co(bib)2Cl2]n·2MeOH (sql-bib-Co-Cl-α), featuring square lattice (sql) topology and the bent linker 1,3-bis(1H-imidazol-1-yl)benzene (bib). The as-synthesized sql-bib-Co-Cl-α has 11.
View Article and Find Full Text PDFLangmuir
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
Sorption isotherms for gases and liquids have long been formulated separately. There is a fundamental problem with this approach: the popular isotherm models (such as Langmuir, BET, and GAB) for gases cannot be applied straightforwardly to sorption from solution. This contrasts with the theory of liquid solutions, where solute-solute interaction, mediated by the solvent, is captured as the potential of mean force, providing powerful interpretive tools (e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of California Riverside, Chemistry Department, Chemistry Department, 92521, Riverside, UNITED STATES OF AMERICA.
Although metal-organic frameworks are coordination-driven assemblies, the structural prediction and design using metal-ligand interactions can be unreliable due to other competing interactions. Leveraging non-coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi-module MOF system to explore important and pervasive impact of ligand-ligand interactions on metal-ligand as well as ligand-ligand co-assembly process.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
This study presents the synthesis of a Cd(II) based hydrophobic three dimensional crystalline network material (CNM), [Cd(L)(LH)(bpe)], {L = {4,4'-(hexafluroisopropylidine)bis(benzoate)} and 1,2-di(4-pyridyl) ethylene (bpe)}, 1(Cd), by employing the slow-diffusion method. The three-dimensional structure of 1(Cd) was determined by single crystal X-ray diffraction and characterized by powder X-ray diffraction (PXRD), FT-IR spectroscopy and thermogravimetric analysis (TGA). Subsequently, post-synthetic modification of 1(Cd) with Cu(II) at room temperature led to the formation of isostructural 1(Cu) with partial substitution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!