Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Incorporating various sources of biological information is important for biological discovery. For example, genes have a multiview representation. They can be represented by features such as sequence length and pairwise similarities. Hence, the types vary from numerical features to categorical features. We propose a large margin Random Forests (RF) classification approach based on RF proximity kernals. Random Forests accommodate mixed data types naturally. The performance on four biological datasets is promising compared with other state of the art methods including Support Vector Machines (SVMs) and RF classifiers. It demonstrates high potential in the discovery of functional roles of biomolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1504/IJBRA.2012.045975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!