The destruction of the neovessels in solid tumors can cause the death of tumor cells resulting from the lack of oxygen and nutrients. Peculiarities of the tumor vasculature, however, also position angiogenic endothelial cells as obvious targets to address cytotoxic drugs into the tumor. In particular, the identification of a three-amino acids sequence, arginine-glycine-aspartate (RGD), as a fundamental recognition site for proliferating endothelial attachment to the extracellular matrix leads to the development of tumor-targeting ligands for nanoparticles. The RGD peptide can target the α(v)β(3) integrin overexpressed by the tumor endothelium, and thereby increases the accumulation of drug-loaded RGD-grafted nanoparticles. RGD-nanoparticles may thus extravasate more efficiently and enter the tumor via the enhanced permeability and retention (EPR) effect. This combination of active and passive processes leads to the penetration of nanoparticles into the tumor tissue, followed by cellular uptake and intracellular delivery of the cytotoxic payload. Since cancer cells may also express α(v)β(3) integrin, the entrapping of RGD-nanoparticles into the tumor interstitial fluid may yet be facilitated through direct binding to cancer cells. Here, we describe methods used for the preparation of RGD-nanoparticles and for the validation of their potential of tumor endothelium targeting both in vitro and in vivo. We also illustrate how RGD-nanoparticles may be more suited than nontargeted modalities for the tumor delivery of poorly soluble and/or highly cytotoxic drugs, using different mouse tumor xenograft models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-391860-4.00008-2 | DOI Listing |
Nat Cancer
January 2025
Medical University of Vienna, Department of Dermatology, Vienna, Austria.
We present a single-arm, phase II, neoadjuvant trial with the oncolytic virus talimogene laherparepvec (T-VEC) in 18 patients with difficult-to-resect cutaneous basal cell carcinomas. The primary end point, defined as the proportion of patients, who after six cycles of T-VEC (13 weeks), become resectable without the need for plastic reconstructive surgery, was already achieved after stage I (9 of 18 patients; 50.0%); thus the study was discontinued for early success.
View Article and Find Full Text PDFMol Cancer
January 2025
Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria.
The dynamic interactions between tumor endothelial cells (TECs) and the immune microenvironment play a critical role in the progression of non-small cell lung cancer (NSCLC). In general, endothelial cells exhibit diverse immunomodulatory properties, influencing immune cell recruitment, antigen presentation, and regulation of immune checkpoint expression. Understanding the multifaceted roles of TECs as well as assigning specific functional hallmarks to various TEC phenotypes offer new avenues for targeted development of therapeutic interventions, particularly in the context of advanced immunotherapy and anti-angiogenic treatments.
View Article and Find Full Text PDFJ Clin Invest
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.
View Article and Find Full Text PDFDev Cell
January 2025
Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany. Electronic address:
The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms.
View Article and Find Full Text PDFThromb Haemost
January 2025
Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
Background: V617F-mutated myeloproliferative neoplasms (MPN) exhibit abnormal proliferation of bone marrow progenitors and increased risk of thrombosis, specifically in splanchnic veins (SVT). The contribution of the endothelium to the development of the prothrombotic phenotype was explored.
Material And Methods: Plasma and serum samples from V617F MPN patients with (n=26) or without (n=7) thrombotic debut and different treatments, were obtained (n=33).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!