Somatostatin receptor subtype-4 agonist NNC 26-9100 decreases extracellular and intracellular Aβ₁₋₄₂ trimers.

Eur J Pharmacol

Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Edwardsville, IL, United States.

Published: May 2012

Soluble amyloid β-protein (Aβ) oligomers are primary mediators of synaptic dysfunction associated with the progression of Alzheimer's disease. Such Aβ oligomers exist dependent on their rates of aggregation and metabolism. Use of selective somatostatin receptor-subtype agonists have been identified as a potential means to mitigate Aβ accumulation in the brain, via regulation of the enzyme neprilysin. Herein, we first evaluated the impact of the somatostatin receptor subtype-4 agonist 1-[3-[N-(5-Bromopyridin-2-yl)-N-(3,4-dichlorobenzyl)amino]propyl]-3-[3-(1H-imidazol-4-yl)propyl]thiourea (NNC 26-9100) on learning and memory in 12-month SAMP8 mice (i.c.v. injection). NNC 26-9100 (0.2 μg-dose) was shown to enhance both learning (T-maze) and memory (object recognition) compared to vehicle controls. Cortical and hippocampal tissues were evaluated subsequent to NNC 26-9100 (0.2 μg) or vehicle administration for changes in neprilysin activity, along with protein expression of amyloid-precursor protein (APP), neprilysin, and Aβ₁₋₄₂ oligomers within respective cellular fractions (extracellular, intracellular and membrane). NNC 26-9100 increased neprilysin activity in cortical tissue, with an associated protein expression increase in the extracellular fraction and decreased in the intracellular fraction. A decrease in intracellular APP expression was found with treatment in both cortical and hippocampal tissues. NNC 26-9100 also significantly decreased expression of Aβ₁₋₄₂ trimers within both the extracellular and intracellular cortical fractions. No expression changes were found in membrane fractions for any protein. These finding suggest the potential use of selective SSTR4 agonists to mitigate toxic oligomeric forms of Aβ₁₋₄₂ in critical regions of the brain identified with learning and memory decline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340534PMC
http://dx.doi.org/10.1016/j.ejphar.2012.03.020DOI Listing

Publication Analysis

Top Keywords

nnc 26-9100
24
extracellular intracellular
12
somatostatin receptor
8
receptor subtype-4
8
subtype-4 agonist
8
aβ₁₋₄₂ trimers
8
aβ oligomers
8
learning memory
8
cortical hippocampal
8
hippocampal tissues
8

Similar Publications

Microglia are the resident immune cell of the brain involved in the development and progression of Alzheimer's disease (AD). Modulation of microglia activity represents a potential mechanism for treating AD. Herein, the compound NNC 26-9100 (NNC) was evaluated in toxicity, nitric oxide release, Aβ1-42 uptake and cytosolic calcium assays during lipopolysaccharide (LPS)-activated conditions using mouse BV2 microglia cells.

View Article and Find Full Text PDF

Somatostatin released from the capsaicin-sensitive sensory nerves mediates analgesic and anti-inflammatory effects via its receptor subtype 4 (SST) without influencing endocrine functions. Therefore, SST is considered to be a novel target for drug development in pain, especially chronic neuropathy which is a great unmet medical need. Here, we examined the binding, SST-linked G protein activation and β-arrestin activation on stable SST expressing cells and the effects of our novel pyrrolo-pyrimidine molecules (20, 100, 500, 1,000, 2,000 µg·kg) on partial sciatic nerve ligation-induced traumatic mononeuropathic pain model in mice.

View Article and Find Full Text PDF

Somatostatin Receptor Subtype-4 Regulates mRNA Expression of Amyloid-Beta Degrading Enzymes and Microglia Mediators of Phagocytosis in Brains of 3xTg-AD Mice.

Neurochem Res

November 2019

Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in memory and cognitive impairment. The use of somatostatin receptor subtype-4 (SSTR) agonists have been proposed for AD treatment. This study investigated the effects of selective SSTR agonist NNC 26-9100 on mRNA expression of key genes associated with AD pathology (microglia mediators of Aβ phagocytosis, amyloid-beta (Aβ)-degrading enzymes, anti-oxidant enzymes and pro-inflammatory cytokines) in 3xTg-AD mice.

View Article and Find Full Text PDF

Soluble amyloid-β peptide (Aβ) oligomers have been hypothesized to be primary mediators of Alzheimer's disease progression. In this regard, reduction of soluble Aβ-oligomers levels within the brain may provide a viable means in which to treat the disease. Somatostatin receptor subtype-4 (SSTR4) agonists have been proposed to reduce Aβ levels in the brain via enhancement of enzymatic degradation.

View Article and Find Full Text PDF

Objective: To investigate the effects of activation of somatostatin subtype 4 (SST4) on the micturition reflex in rats.

Methods: Continuous cystometrograms (0.04 mL/min infusion rate) were performed in female Sprague-Dawley rats (242-265 g) under urethane anesthesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!