Electroactive polymers are a new generation of "green" cathode materials for rechargeable lithium batteries. We have developed nanocomposites combining graphene with two promising polymer cathode materials, poly(anthraquinonyl sulfide) and polyimide, to improve their high-rate performance. The polymer-graphene nanocomposites were synthesized through a simple in situ polymerization in the presence of graphene sheets. The highly dispersed graphene sheets in the nanocomposite drastically enhanced the electronic conductivity and allowed the electrochemical activity of the polymer cathode to be efficiently utilized. This allows for ultrafast charging and discharging; the composite can deliver more than 100 mAh/g within just a few seconds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl2039666DOI Listing

Publication Analysis

Top Keywords

polymer-graphene nanocomposites
8
rechargeable lithium
8
lithium batteries
8
cathode materials
8
polymer cathode
8
graphene sheets
8
nanocomposites ultrafast-charge
4
ultrafast-charge -discharge
4
-discharge cathodes
4
cathodes rechargeable
4

Similar Publications

Graphene's incorporation into polymers has enabled the development of advanced polymer/graphene nanocomposites with superior properties. This study focuses on the use of a microcellular foamed polystyrene (PS)/graphene (GP) nanocomposite (3 wt%) for nickel (II) ion removal from aqueous solutions. Adsorption behavior was evaluated through FTIR, TEM, SEM, TGA, and XRD analyses.

View Article and Find Full Text PDF

A key advantage of combining the exceptional properties of graphene with conducting polymers, lies in their remarkable property tunability through filler additions into polymer matrices, with synthesis routes playing a crucial role in shaping their characteristics. In this work, we examine the electronic properties of polyaniline and graphene nanocomposites synthesized via a simple solution mixing method, which offers advantages such as ease of use and efficiency. Increasing graphene content enhances nanocomposite conductivity, and a percolation effect is observed.

View Article and Find Full Text PDF

Phthalates, categorized as a main constituent of endocrine-disrupting chemicals (EDCs), are present in polymeric products. These substances can enter the environment through several pathways, including improper handling, which leads to their presence in toilet water, floor washings, surface runoff, and landfill leachate. This study focuses on the performance analysis of nanocomposite materials made of polymer (polypyrrole), quasi-metal (graphene oxide), and biochar (from palmyra seed) for the elimination of diethyl phthalates (DEP) from aqueous environments.

View Article and Find Full Text PDF

A novel approach to predict the electrical conductivity of nanocomposites by a weak interphase around graphene network.

Sci Rep

September 2024

Department of Mechanical Engineering (BK21 four), College of Engineering, Kyung Hee University, Yongin, Republic of Korea.

Herein, we offer a model for estimating the tunneling conductivity of polymer-graphene nanocomposites based on interfacial properties, the proportion of networked graphene, and the wettability value between the polymer medium and the filler. The interfacial properties are influenced by the minimum diameter of the nanosheets (D), whose conductivity can be transferred to the medium via interfacial conduction (τ). These parameters impact the actual aspect ratio and the volume proportion of the filler, which, in turn, control the onset of percolation and the proportion of nanosheets in the network.

View Article and Find Full Text PDF

Quorum sensing inhibiting dihydropyrrol-2-ones embedded polymer/graphene oxide nanocomposite waterborne antimicrobial coatings.

J Mater Chem B

August 2024

Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

With increasing antibiotic resistance and hospital acquired microbial infections, there has been a growing interest to explore alternate antimicrobial approaches. This is particularly challenging when aiming to protect surfaces over a large area to avoid contact mediated infection transmission. Quorum sensing (QS) inhibition has emerged as an alternate antimicrobial approach overcoming evolutionary stress driven resistance observed in antibiotic treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!