Characterization of the interaction of iodinated apolipoprotein (apo) E-free high density lipoprotein (HDL) with cultured human hepatocytes provides evidence for a saturable, Ca2(+)-independent, high affinity binding site with an apparent km value of 20 micrograms/ml of apolipoprotein. Nitrated HDL and low density lipoprotein (LDL) did not compete for the binding of HDL, in contrast to very low density lipoprotein (VLDL). It is suggested that VLDL competition is exerted by the presence of apo Cs. Degradation of HDL was relatively low and in some cases not detectable. In cases where degradation was found, inhibitors of the lysosomal pathway of protein degradation had no effect, while LDL degradation was inhibited more than 80%. In the presence of 10 microM of monensin, the cell-association of HDL was unaffected, but the degradation was inhibited by 30%. Under similar conditions, LDL association was inhibited by 40% and LDL degradation, by 90%. Incubation of human hepatocytes with fluorescently labeled HDL (Dil-HDL) revealed (in contrast to Dil-LDL) mainly strong membrane-bound fluorescence and hardly any labeling of small intracellular vesicles. It is concluded that human hepatocytes possess a specific high affinity site for human HDL with recognition properties similar to those described earlier on rat hepatocytes. No evidence that the binding of HDL is actively coupled to uptake and lysosomal degradation could be obtained, indicating that binding of LDL and HDL to human hepatocytes is coupled differently to intracellular pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.atv.10.6.1127DOI Listing

Publication Analysis

Top Keywords

human hepatocytes
20
density lipoprotein
16
hdl
9
e-free high
8
high density
8
hepatocytes evidence
8
high affinity
8
hdl low
8
low density
8
binding hdl
8

Similar Publications

Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice.

View Article and Find Full Text PDF

Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.

View Article and Find Full Text PDF

The excessive accumulation of intrahepatic triglyceride (IHTG) in the liver is a risk factor for metabolic diseases, including type 2 diabetes and cardiovascular disease. IHTG can excessively accumulate owing to imbalances in the delivery, synthesis, storage and disposal of fat to, in and from the liver. Although obesity is strongly associated with IHTG accumulation, emerging evidence suggests that the composition of dietary fat, in addition to its quantity, plays a role in mediating IHTG accumulation.

View Article and Find Full Text PDF

Multi-omics analysis reveals distinct gene regulatory mechanisms between primary and organoid-derived human hepatocytes.

Dis Model Mech

January 2025

Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.

Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.

View Article and Find Full Text PDF

Objective: Heterocyclic amines (HCAs) are mutagens and carcinogens primarily generated when cooking meat at high temperatures or until well-done, and their major metabolic pathway includes hepatic N-hydroxylation via CYP1A2 followed by O-acetylation via N-acetyltransferase 2 (NAT2). NAT2 expresses a well-defined genetic polymorphism in humans resulting in rapid and slow acetylators. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!