Gender and Material Transfers between Older Parents and Children in Ismailia, Egypt.

J Marriage Fam

Hubert Department of Global Health and Department of Sociology, Emory University, 1518 Clifton Rd. NE, Atlanta, GA 30322 ( ).

Published: February 2012

In Egypt, kin relations have been governed by a patriarchal contract, which defines expectations for intergenerational support along gendered lines. Social changes may be disrupting these customs and bringing attention to the ways gender may influence intergenerational support in rapidly changing contexts. Using data from 4,465 parent-child dyads in Ismailia, Egypt, we examined whether intergenerational material transfers favored women over men and whether gaps in needs and endowments accounted for gender differences in transfers. Fathers gave children money and goods more often than did mothers; mothers received material transfers from children more often than did fathers. Compared to sons, daughters made transfers to parents less often and received transfers from parents more often. We found residual advantages to mothers and daughters, even adjusting for differential needs and endowments. Findings corroborate persistent norms of gender complementarity, patrilocal endogamy, and reciprocation for women's caregiving, despite changes that have threatened patriarchal rules of exchange.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309706PMC
http://dx.doi.org/10.1111/j.1741-3737.2011.00881.xDOI Listing

Publication Analysis

Top Keywords

material transfers
12
ismailia egypt
8
intergenerational support
8
transfers parents
8
transfers
6
gender
4
gender material
4
transfers older
4
older parents
4
parents children
4

Similar Publications

The clinical management of people with multidrug-resistant (MDR) human immunodeficiency virus (HIV) remains challenging despite continued development of antiretroviral agents. A 58-year-old male individual with MDR HIV and Kaposi sarcoma (KS) was treated with a new antiretroviral regimen consisting of anti-CD4 domain 1 antibody UB-421 and capsid inhibitor lenacapavir. The individual experienced delayed but sustained suppression of plasma viremia and a substantial increase in the CD4 T cell count.

View Article and Find Full Text PDF

Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy MnGe as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer.

View Article and Find Full Text PDF

A significant challenge in computational chemistry is developing approximations that accelerate ab initio methods while preserving accuracy. Machine learning interatomic potentials (MLIPs) have emerged as a promising solution for constructing atomistic potentials that can be transferred across different molecular and crystalline systems. Most MLIPs are trained only on energies and forces in vacuum, while an improved description of the potential energy surface could be achieved by including the curvature of the potential energy surface.

View Article and Find Full Text PDF

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

Entropy engineering activation of UiO-66 for boosting catalytic transfer hydrogenation.

Nat Commun

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.

High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!