Decoupling of transcription and translation during postmeiotic germ cell differentiation is critical for successful spermatogenesis. Here we establish that the interaction between microRNAs and actin-associated protein Arpc5 sets the stage for an elaborate translational control mechanism by facilitating the sequestration of germ cell mRNAs into translationally inert ribonucleoprotein particles until they are later translated. Our studies reveal that loss of microRNA-dependent regulation of Arpc5, which controls the distribution of germ cell mRNAs between translationally active and inactive pools, results in abnormal round spermatid differentiation and impaired fertility. Interestingly, Arpc5 functions as a broadly acting translational suppressor, as it inhibits translation initiation by blocking 80S formation and facilitates the transport of mRNAs to chromatoid/P bodies. These findings identify a unique role for actin-associated proteins in translational regulation, and suggest that mRNA-specific and general translational control mechanisms work in tandem to regulate critical germ cell differentiation events and diverse somatic cell functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326518PMC
http://dx.doi.org/10.1073/pnas.1117837109DOI Listing

Publication Analysis

Top Keywords

germ cell
20
cell differentiation
12
interaction micrornas
8
micrornas actin-associated
8
actin-associated protein
8
protein arpc5
8
translational control
8
cell mrnas
8
mrnas translationally
8
cell
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!