Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session6poku80d753q8blf2lfj9ovtekr8u0f7): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356463 | PMC |
http://dx.doi.org/10.1007/s10194-012-0438-5 | DOI Listing |
Mol Breed
January 2025
Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China.
Unlabelled: Seed size is an economically important trait that directly determines the seed yield in soybean. In the current investigation, we used an integrated strategy of linkage mapping, association mapping, haplotype analysis and candidate gene analysis to determine the genetic makeup of four seed size-related traits viz., 100-seed weight (HSW), seed area (SA), seed length (SL), and seed width (SW) in soybean.
View Article and Find Full Text PDFPeerJ
December 2024
Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China.
Background: Rice, a staple food for over half of the global population, exhibits significant diversity in grain shape characteristics, which impact not only appearance and milling quality but also grain weight and yield. Identifying genes and loci underlying these traits is crucial for improving rice breeding programs. Previous studies have identified multiple quantitative trait loci (QTLs) and genes regulating grain length, width, and length-width ratio; however, further investigation is necessary to elucidate their regulatory pathways and their practical application in crop improvement.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
Genetic dissection of yield-related traits can be used to improve wheat yield through molecular design breeding. In this study, we genotyped 245 wheat varieties and measured 13 yield-related plant height-, grain-, and spike-related traits, in seven environments, and identified 778 loci for these traits by genome-wide association study (GWAS) using single- and multi-locus models. Among these loci, nine were major, of which seven were novel, including Qph/lph.
View Article and Find Full Text PDFGenet Sel Evol
December 2024
State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
Background: The genome-wide association study (GWAS) is a powerful method for mapping quantitative trait loci (QTL). However, standard GWAS can detect only QTL that segregate in the mapping population. Crossing populations with different characteristics increases genetic variability but F2 or back-crosses lack mapping resolution due to the limited number of recombination events.
View Article and Find Full Text PDFVet Res
December 2024
National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
MHC B2 haplotype chickens have been reported to induce strong immune response against various avian pathogens. However, little is known about the CD8T-cell epitope with MHC B2-restricted on subgroup J avian leukosis virus (ALV-J). In this study, we explored the ALV-J-induced cellular immune response in B2 haplotype chickens in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!