Novel Phakopsora pachyrhizi extracellular proteins are ideal targets for immunological diagnostic assays.

Appl Environ Microbiol

USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD, USA.

Published: June 2012

Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), continues to spread across the southeast and midsouth regions of the United States, necessitating the use of fungicides by producers. Our objective in this research was to identify ASR proteins expressed early during infection for the development of immunodiagnostic assays. We have identified and partially characterized a small gene family encoding extracellular proteins in the P. pachyrhizi urediniospore wall, termed PHEPs (for Phakopsora extracellular protein). Two highly expressed protein family members, PHEP 107 and PHEP 369, were selected as ideal immunodiagnostic targets for antibody development, after we detected PHEPs in plants as early as 3 days postinfection (dpi). Monoclonal antibodies (MAbs; 2E8E5-1 and 3G6H7-3) generated against recombinant PHEP 369 were tested for sensitivity against the recombinant protein and extracts from ASR-infected plants and for specificity against a set of common soybean pathogens. These antibodies should prove applicable in immunodiagnostic assays to detect infected soybeans and to identify ASR spores from sentinel surveillance plots.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346385PMC
http://dx.doi.org/10.1128/AEM.07079-11DOI Listing

Publication Analysis

Top Keywords

phakopsora pachyrhizi
8
extracellular proteins
8
identify asr
8
immunodiagnostic assays
8
phep 369
8
novel phakopsora
4
pachyrhizi extracellular
4
proteins ideal
4
ideal targets
4
targets immunological
4

Similar Publications

Resistance in Soybean Against Infection by Is Induced by a Phosphite of Nickel and Potassium.

Plants (Basel)

November 2024

Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.

Article Synopsis
  • Soybean crops are significantly affected by rust epidemics caused by a specific pathogen, leading to yield losses and increased fungicide usage.
  • A study tested a phosphite solution of nickel and potassium as an induced resistance (IR) treatment, finding that it dramatically reduced the germination of rust spores and disease severity in infected soybean plants.
  • The IR treatment not only enhanced nutrient levels like potassium and nickel but also preserved the plants' photosynthetic health and boosted the expression of defense-related genes, suggesting a robust biochemical response to fungal infections.
View Article and Find Full Text PDF

Variability and functional characterization of the Phakopsora pachyrhizi Egh16-like effectors.

Genet Mol Biol

September 2024

Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil.

Effector proteins in Phakopsora pachyrhizi (Pp), the causative agent of Asian Soybean rust, are involved in the infection process. A previous study identified a rust effector Egh16-like family based expression profile during the interaction with soybean. Herein, we scrutinized available the Pp genomes to validate the predicted Egh16-like family of Pp and identify new family members.

View Article and Find Full Text PDF

Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR.

View Article and Find Full Text PDF

Evaluation of Resistance Induction Promoted by Bioactive Compounds of LV Strain against Asian Soybean Rust.

Microorganisms

August 2024

Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil.

are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. causes Asian soybean rust, representing a high loss of yield around the world.

View Article and Find Full Text PDF

Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!