Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), continues to spread across the southeast and midsouth regions of the United States, necessitating the use of fungicides by producers. Our objective in this research was to identify ASR proteins expressed early during infection for the development of immunodiagnostic assays. We have identified and partially characterized a small gene family encoding extracellular proteins in the P. pachyrhizi urediniospore wall, termed PHEPs (for Phakopsora extracellular protein). Two highly expressed protein family members, PHEP 107 and PHEP 369, were selected as ideal immunodiagnostic targets for antibody development, after we detected PHEPs in plants as early as 3 days postinfection (dpi). Monoclonal antibodies (MAbs; 2E8E5-1 and 3G6H7-3) generated against recombinant PHEP 369 were tested for sensitivity against the recombinant protein and extracts from ASR-infected plants and for specificity against a set of common soybean pathogens. These antibodies should prove applicable in immunodiagnostic assays to detect infected soybeans and to identify ASR spores from sentinel surveillance plots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346385 | PMC |
http://dx.doi.org/10.1128/AEM.07079-11 | DOI Listing |
Plants (Basel)
November 2024
Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
Genet Mol Biol
September 2024
Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil.
Effector proteins in Phakopsora pachyrhizi (Pp), the causative agent of Asian Soybean rust, are involved in the infection process. A previous study identified a rust effector Egh16-like family based expression profile during the interaction with soybean. Herein, we scrutinized available the Pp genomes to validate the predicted Egh16-like family of Pp and identify new family members.
View Article and Find Full Text PDFJ Integr Plant Biol
November 2024
Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR.
View Article and Find Full Text PDFMicroorganisms
August 2024
Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil.
are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. causes Asian soybean rust, representing a high loss of yield around the world.
View Article and Find Full Text PDFBMC Plant Biol
August 2024
Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil.
Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!