A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome. | LitMetric

Arabinoxylan is a heteropolymeric chain of a β-1,4-linked xylose backbone substituted with arabinose residues, representing a principal component of plant cell walls. Here we developed recombinant Saccharomyces cerevisiae strains as whole-cell biocatalysts capable of combining hemicellulase production, xylan hydrolysis, and hydrolysate fermentation into a single step. These strains displayed a series of uni-, bi-, and trifunctional minihemicellulosomes that consisted of a miniscaffoldin (CipA3/CipA1) and up to three chimeric enzymes. The miniscaffoldin derived from Clostridium thermocellum contained one or three cohesin modules and was tethered to the cell surface through the S. cerevisiae a-agglutinin adhesion receptor. Up to three types of hemicellulases, an endoxylanase (XynII), an arabinofuranosidase (AbfB), and a β-xylosidase (XlnD), each bearing a C-terminal dockerin, were assembled onto the miniscaffoldin by high-affinity cohesin-dockerin interactions. Compared to uni- and bifunctional minihemicellulosomes, the resulting quaternary trifunctional complexes exhibited an enhanced rate of hydrolysis of arabinoxylan. Furthermore, with an integrated d-xylose-utilizing pathway, the recombinant yeast displaying the bifunctional minihemicellulosome CipA3-XynII-XlnD could simultaneously hydrolyze and ferment birchwood xylan to ethanol with a yield of 0.31 g per g of sugar consumed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346407PMC
http://dx.doi.org/10.1128/AEM.07679-11DOI Listing

Publication Analysis

Top Keywords

xylan ethanol
8
recombinant saccharomyces
8
saccharomyces cerevisiae
8
cerevisiae strains
8
direct conversion
4
conversion xylan
4
ethanol recombinant
4
strains displaying
4
displaying engineered
4
engineered minihemicellulosome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!