This article evaluates the influence of the main parameters in a cathodic arc deposition process on the microstructure of titanium dioxide thin coatings and correlates these to the photocatalytic activity (PCA) and in vitro bioactivity of the coatings. Bioactivity of all as deposited coatings was confirmed by the growth of uniform layers of hydroxyapatite (HA) after 7 days in phosphate buffered saline at 37°C. Comparison of the HA growth after 24 h indicated enhanced HA formation on coatings with small titanium dioxide grains of rutile and anatase phase. The results from the PCA studies showed that coatings containing a mixed microstructure of both anatase and rutile phases, with small grain sizes in the range of 26-30 nm and with a coating thickness of about 250 nm, exhibited enhanced activity as compared with other microstructures and higher coating thickness. The results of this study should be valuable for the development of new bioactive implant coatings with photocatalytically induced on-demand antibacterial properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.32674 | DOI Listing |
Environ Res
December 2024
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China. Electronic address:
Photocatalytic antibacterial technology has the potential to prevent the formation of biofilms and microbial corrosion of metals by rapidly eliminating microorganisms in a short period. In this study, novel NH-MIL-101(Al)/AgI is in-situ synthesized at ambient temperature, revealing enhanced photocatalytic antibacterial activity and cyclic stability in seawater. A low dosage of 0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea. Electronic address:
The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.
View Article and Find Full Text PDFWater Res
December 2024
School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China. Electronic address:
Synergism of piezoelectricity and photocatalysis is an effective approach for pollutant degradation and removal, and has garnered considerable attention. Nonetheless, great challenges still remain in recombination and slow migration rate of charge carriers. For response, a novel Three-in-One strategy based on MXene/ZnS/FeO (MZF) was developed to enhance the piezoelectric photocatalytic activity via achieving a triple effect: Dual Schottky heterojunction, Interface electric field, and Oxygen vacancy.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China. Electronic address:
Photocatalytic removal of antibiotic such as ciprofloxacin from polluted water is of great value for eco-environment protection. To further enhance the piezoelectric effect in photocatalysis, we designed and synthesized a ternary heterojunction piezoelectric photocatalyst through uniformly loading MoS nanosheets onto BiFeO (BFO) nanofibers, namely MoS/BiS/BFO. Piezoresponse force microscopy and Kelvin probe force microscopy demonstrated its enhanced piezoelectric properties, showing a maximum amplitude displacement of 395.
View Article and Find Full Text PDFFront Chem
December 2024
Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland.
2,3-Dihydrobenzofurans are noteworthy scaffolds in organic and medicinal chemistry, constituting the structural framework of many of the varied medicinally active organic compounds. Moreover, a diverse variety of biologically potent natural products also contain this heterocyclic nucleus. Reflecting on the wide biological substantiality of dihydrobenzofurans, several innovative and facile synthetic developments are evolving to achieve these heterocycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!