Objectives/hypothesis: Organ preservation surgery is a major focus in head and neck oncology. Current approaches are aimed toward improving quality of life and decreasing treatment-related morbidity. Transoral robotic surgery was developed to overcome the limitations of traditional surgical approaches. The most widely used robotic system is the da Vinci Surgical System. Although the da Vinci offers clear surgical advantages over traditional approaches, its rigid operative arms prevent complex maneuverability in three-dimensional space. The ideal surgical robot would configure to the anatomy of the patient and maneuver in narrow spaces. We present the first cadaveric trials of the use of a highly flexible robot able to traverse the nonlinear upper aerodigestive tract and gain physical and visual access to important anatomical landmarks without laryngeal suspension.

Study Design: Feasibility.

Methods: Using human cadavers, we investigated the feasibility of visualizing the endolarynx transorally with a highly flexible robot without performing suspension of the larynx. Two fresh and four preserved human specimens were used.

Results: Unhampered visualization of the endolarynx was achieved in all specimens without performing laryngeal suspension. Standard mouth retractors facilitated the delivery of the robot into the endolarynx.

Conclusions: The flexible robot technology mitigates laryngeal suspension and the limitations of current robotic surgery with rigid line-of-sight-directed instruments. Having demonstrated the feasibility of physical and visual access to the endolarynx, future work will study the feasibility of using the highly flexible robot in transoral robotic procedures with flexible instrumentation placed in the robot's available working ports.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lary.23237DOI Listing

Publication Analysis

Top Keywords

flexible robot
20
highly flexible
16
transoral robotic
8
robotic surgery
8
system vinci
8
physical visual
8
visual access
8
laryngeal suspension
8
robot
7
flexible
6

Similar Publications

The Application of an Intelligent -Harvesting Device Based on FES-YOLOv5s.

Sensors (Basel)

January 2025

Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing 210014, China.

To address several challenges, including low efficiency, significant damage, and high costs, associated with the manual harvesting of , in this study, a machine vision-based intelligent harvesting device was designed according to its agronomic characteristics and morphological features. This device mainly comprised a frame, camera, truss-type robotic arm, flexible manipulator, and control system. The FES-YOLOv5s deep learning target detection model was used to accurately identify and locate .

View Article and Find Full Text PDF

Industrial robotic arms are often subject to significant end-effector pose deviations from the target position due to the combined effects of nonlinear deformations such as link flexibility, joint compliance, and end-effector load. To address this issue, a study was conducted on the analysis and compensation of end-position errors in a six-degree-of-freedom robotic arm. The kinematic model of the robotic arm was established using the Denavit-Hartenberg (DH) parameter method, and a rigid-flexible coupled virtual prototype model was developed using ANSYS and ADAMS.

View Article and Find Full Text PDF

Can the Dimensional Optimisation of 3D FDM-Manufactured Parts Be a Solution for a Correct Design?

Materials (Basel)

January 2025

Industrial Engineering and Robotics Faculty, Politehnica University of Bucharest, Spl. Independentei 303, 060042 Bucharest, Romania.

Additive manufacturing technology, also known as 3D printing, has emerged as a viable alternative in modern manufacturing processes. Unlike traditional manufacturing methods, which often involve complex mechanical operations that can lead to errors and inconsistencies in the final product, additive technology offers a new approach that enables precise layer-by-layer production with improved geometric accuracy, reduced material consumption and increased design flexibility. Geometrical accuracy is a critical issue in industries such as aerospace, automotive, medicine and consumer goods, hence the importance of the following question: can the dimensional optimisation of 3D FDM-manufactured parts be a solution for correct design? This paper presents a complex study of model parts printed from four common polymers used in fused deposition modelling (FDM) additive technology, namely ABS (acrylonitrile-butadiene-styrene), PLA (polylactic acid), HIPS (high-impact polystyrene) and PETG (polyethylene terephthalate glycol).

View Article and Find Full Text PDF

Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing.

Materials (Basel)

January 2025

Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China.

Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS).

View Article and Find Full Text PDF

This study investigates the mechanical properties of thermoplastic polyurethane (TPU) 60A, which is a flexible material that can be used to produce soft robotic grippers using additive manufacturing. Tensile tests were conducted under ISO 37 and ISO 527 standards to assess the effects of different printing orientations (0°, 45°, -45°, 90°, and quasi-isotropic) and test speeds (2 mm/min, 20 mm/min, and 200 mm/min) on the material's performance. While the printing orientations at 0° and quasi-isotropic provided similar performance, the quasi-isotropic orientation demonstrated the most balanced mechanical behavior, establishing it as the optimal choice for robust and predictable performance, particularly for computational simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!