A C(2)-symmetric tetraamine catalyst was developed for the asymmetric Michael addition of ketones to chalcones. The corresponding adducts 1,5-dicarbonyl compounds were obtained in good chemical yields with high levels of diastereo- and enantioselectivities (up to >99 : 1 dr and 93% ee) under mild conditions. By studying the ESI-MS of the intermediates, a proposed mechanism was disclosed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2ob06897d | DOI Listing |
Nat Commun
December 2024
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs.
View Article and Find Full Text PDFChemistry
December 2024
Department of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
We present a comprehensive account on the evolution of a synthetic platform for a subfamily of ent-pimaranes. For the most complex member, norflickinflimiod C, five distinct strategies relying on either cationic or radical polyene cyclizations to construct the requisite tricyclic carbon scaffold were explored. Insights from early and late stage oxidative and reductive dearomatization studies ultimately led to a mild, rhodium-catalyzed arene hydrogenation for the final synthetic route.
View Article and Find Full Text PDFJ Org Chem
December 2024
Institute and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China.
An asymmetric tandem esterification/Michael addition reaction of β-keto acylpyrazoles with -hydroxychalcones has been established under the catalysis of a bifunctional squaramide-tertiary amine. A wide variety of biorelevant 3,4-dihydrocoumarin derivatives were generally obtained in high yields (up to 93%) with excellent diastereo- and enantioselectivities (>19:1 dr, up to 93% ee) under mild reaction conditions. This reaction represents the successful application of β-keto acylpyrazoles as 2C building blocks in catalytic asymmetric cyclizations.
View Article and Find Full Text PDFOrg Lett
December 2024
Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
A regiodivergent strategy for the asymmetric diversity-oriented synthesis of spirooxindoles via organocatalytic cascade reactions is developed. Two regioselective pathways can be precisely controlled with different aminocatalysts in the reaction of 2-hydroxycinnamaldehydes and β,β-disubstituted 3-alkylidene oxindoles. The cascade vinylogous Michael/oxa-Michael/aldol reactions gave spiro-bridged oxindoles bearing two adjacent quaternary stereocenters, while the cascade oxa-Michael/Michael reactions gave spirooxindoles.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2024
School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland. Electronic address:
The mechanical properties of the human skull have been examined and established previously in the literature, for example, the transversal isotropy of cranial bone and properties including the Elastic modulus and Poisson's ratio. However, despite the existing data, there are still mechanical properties which remain to be determined for the human skull. The present study aims to characterise the fracture properties of human cranial bone within the Linear Elastic Fracture Mechanics (LEFM) framework.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!