The inhibitor of NF-κB alpha (IκBα) protein is an important regulator of the transcription factor NF-κB. In neurons, IκBα has been shown to play a role in neurite outgrowth and cell survival. Recently, a phosphorylated form of IκBα (pIκBα Ser32/36) was reported to be highly enriched at the axon initial segment (AIS) and was proposed to function upstream of ankyrinG in AIS assembly, including ion channel recruitment. However, we report here that the AIS clustering of ankyrinG and Na(+) channels in the brains of IκBα knockout (Nfkbia(-/-)) mice is comparable to that in wild-type littermates. Furthermore, we found that multiple phospho-specific antibodies against pIκBα Ser32/36 non-specifically label AIS in Nfkbia(-/-) cortex and AIS in dissociated Nfkbia(-/-) hippocampal neurons. With the exception of ankyrinG, shRNA-mediated knockdown of known AIS proteins in cultured hippocampal neurons did not eliminate the AIS labeling with pIκBα antibodies. Instead, the pIκBα antibodies cross-react with a phosphorylated epitope of a protein associated with the microtubule-based AIS cytoskeleton that is not integrated into the AIS membrane complex organized by ankyrinG. Our results indicate that pIκBα is neither enriched at the AIS nor required for AIS assembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383875 | PMC |
http://dx.doi.org/10.1016/j.mcn.2012.03.003 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
College of Pharmacy, University of Illinois, Chicago, IL 60612, USA.
Artificial Intelligence (AI) has the disruptive potential to transform patients' lives via innovations in pharmaceutical sciences, drug development, clinical trials, and manufacturing. However, it presents significant challenges, ethical concerns, and risks across sectors and societies. AI's rapid advancement has revealed regulatory gaps as existing public policies struggle to keep pace with the challenges posed by these emerging technologies.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
In recent years, advancements in the interaction and collaboration between humans and have garnered significant attention. Social intelligence plays a crucial role in facilitating natural interactions and seamless communication between humans and Artificial Intelligence (AI). To assess AI's ability to understand human interactions and the components necessary for such comprehension, datasets like Social-IQ have been developed.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Radiology, Kastamonu University, Kastamonu 37150, Turkey.
Acute ischemic stroke (AIS) is a leading cause of mortality and disability worldwide, with early and accurate diagnosis being critical for timely intervention and improved patient outcomes. This retrospective study aimed to assess the diagnostic performance of two advanced artificial intelligence (AI) models, Chat Generative Pre-trained Transformer (ChatGPT-4o) and Claude 3.5 Sonnet, in identifying AIS from diffusion-weighted imaging (DWI).
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
The convergence of Artificial Intelligence (AI) and neuroscience is redefining our understanding of the brain, unlocking new possibilities in research, diagnosis, and therapy. This review explores how AI's cutting-edge algorithms-ranging from deep learning to neuromorphic computing-are revolutionizing neuroscience by enabling the analysis of complex neural datasets, from neuroimaging and electrophysiology to genomic profiling. These advancements are transforming the early detection of neurological disorders, enhancing brain-computer interfaces, and driving personalized medicine, paving the way for more precise and adaptive treatments.
View Article and Find Full Text PDFJ Clin Med
January 2025
First Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland.
The precision of imaging and the number of other risk-assessing and diagnostic methods are constantly growing, allowing for the uptake of additional strategies for individualized therapies. Personalized medicine has the potential to deliver more adequate treatment, resulting in better clinical outcomes, based on each patient's vulnerability or genetic makeup. In addition to increased efficiency, costs related to this type of procedure can be significantly lower.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!