Unlabelled: This study was conducted with 35 Nellore beef cattle to determine the effect of supplementation of two levels and two copper sources (organic and inorganic) on metabolism of lipids and cholesterol of meat. The five treatments used were:

Control: without copper supplementation, I10 or I40: 10 or 40 mg/kg DM (as Cu sulfate), O10 or O40: 10 or 40 mg/kg DM (as Cu proteinate). In general, the copper supplementation changed the fatty acid profile of meat (p<0.05), with a higher proportion of unsaturated fatty acids and reduction of saturated fatty acids. There was no effect of supplementation on blood cholesterol and triglycerides, however; in general, there was a reduction in cholesterol concentration in the L. dorsi (p<0.05) compared to the control treatment through the reduction (p<0.05) in the concentrations of GSH and GSH/GSSG ratio. The Cu supplementation did have an influence on metabolism of lipids. The production of healthier meat is beneficial to public health by reducing the risk of cardiovascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2012.02.033DOI Listing

Publication Analysis

Top Keywords

levels copper
8
nellore beef
8
beef cattle
8
copper supplementation
8
supplementation
4
supplementation sources
4
sources levels
4
copper
4
copper lipid
4
lipid metabolism
4

Similar Publications

Imbalances in several trace elements related to antioxidant function may lead to autism spectrum disorder (ASD)-related physiological dysfunction. Nonetheless, contradictory results have been found on the connection between these elements and ASD, and studies of their joint effects and interactions have been insufficient. We therefore designed a case-control study of 152 ASD children and 152 age- and sex-matched typically developing (TD) children to explore the individual and combined associations of manganese (Mn), zinc (Zn), copper (Cu), and selenium (Se) with ASD.

View Article and Find Full Text PDF

Integrated Assessment of Heavy Metal Pollution in the Great Bačka Canal: Comparing Active and Passive Sampling Methods.

Chemosphere

December 2024

University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia.

This study investigates the environmental risks posed by heavy metals in sediment from the Great Bačka Canal using both active and passive sampling methods. The necessity of this research lies in the critical need to address sediment contamination in ecological hotspots and enhance sediment management practices. Active sampling revealed total heavy metal concentrations, while sequential extraction showed bioavailability varied across metal fractions.

View Article and Find Full Text PDF

Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure.

Mar Environ Res

December 2024

Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:

The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.

View Article and Find Full Text PDF

This study assessed the safety of trace metal concentrations in locally produced nutritive food-drinks consumed in Yenagoa metropolis, Bayelsa State, Nigeria. Three different drink types (viz, tiger nut juice, a mixture of tiger nut and soya bean juice and soya bean juice) were purchased from various locations in Yenagoa metropolis, Bayelsa State, Nigeria, between January and February 2024. Thirty samples were analyzed for trace metals using atomic absorption spectrophotometry.

View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!