This paper describes an investigation of the use of computer tomography (CT) to genetically improve carcass composition and conformation in Scottish Blackface sheep. After 5 years of selection on an index designed to improve both composition and conformation (the 'CT index'), a large response was observed in the CT index, with genetic progress equivalent to 0.11 phenotypic standard deviations per year. Heritabilities for the index and for the component traits of average CT-assessed muscle area, ultrasonic muscle depth and ultrasonic fat depth were 0.41 (s.e. 0.08), 0.38 (s.e. 0.07), 0.41 (s.e. 0.05) and 0.30 (s.e. 0.05), respectively. The index was positively genetically correlated with ultrasonic muscle depth and carcass weight and negatively genetically correlated with fat class. The genetic and phenotypic correlations among ultrasonic measurements were positive and moderate. However, many of the genetic correlations tended to have large standard errors. Selection on the CT index moderately improved conformation and was successful at decreasing fat class of the carcass. Equivalent selection on live weight at ultrasound scanning would improve carcass and slaughter weight, and total price received, but would have a slightly deleterious impact on conformation score. The results of this study demonstrate that genetic improvement of carcass quality can be achieved in hill sheep using CT assessed traits.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1751731107413684DOI Listing

Publication Analysis

Top Keywords

carcass quality
8
hill sheep
8
computer tomography
8
improve carcass
8
composition conformation
8
ultrasonic muscle
8
muscle depth
8
genetically correlated
8
fat class
8
carcass
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!