The adsorption and reaction behaviors of HF on the α-Al(2)O(3)(0001) surface are systematically investigated using density functional theory method. By increasing the number of HF molecules in a p(2 × 1) α-Al(2)O(3)(0001) slab, we find that HF is chemically dissociated at low coverage; while both physical and dissociative adsorption occurs at a 3/2 monolayer (ML) coverage. At the same coverage (1.0 ML), diverse configurations of the dissociated HF are obtained in the p(2 × 1) model; while only one is observed in the p(1 × 1) slab due to its smaller surface area compared with the former one. Preliminary fluorination reaction study suggests that the total energy of two dissociated HF in the p(2 × 1) slab increases by 1.00 and 0.72 eV for the formation and desorption of water intermediate, respectively. The coadsorption behaviors of HF and H(2)O indicate that the pre-adsorbed water is unfavorable for the fluorination of Al(2)O(3), which is well consistent with the experimental results. The calculated density of states show that the peak of σ(H-F) disappears, while the peaks of σ(H-O) and σ(Al-F) are observed at -8.4 and -5 to -3 eV for the dissociated HF. Charge density difference analysis indicates that the dissociated F atom attracts electrons, while no obvious changes on electrons are observed for the surface Al atoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3694102 | DOI Listing |
Chem Sci
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 China
Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction interface are essential for improving fuel cell efficiency. We developed an active learning framework combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of the ORR on Fe-N/C using a fully explicit solvent model. Different possible reaction paths have been explored and the O adsorption process is confirmed as the rate-determining step of the ORR at the Fe-N/C-water interface, which needs to overcome a free energy barrier of 0.
View Article and Find Full Text PDFHeliyon
January 2025
Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.
Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Orbital structures are strongly correlated with catalytic performance, whereas their regulation strategy is still in pursuit. Herein, the Fe 3 and O 2 orbital hybridization was optimized by controlling the content of amorphous NiFe(OH) (a-NiFe(OH)), which was grown in situ on crystalline NiFeO (c-NiFeO) using an ultrasonic reduction method. The results of electron energy loss spectroscopy (EELS) and X-ray absorption spectra (XAS) revealed that the Fe-O orbital hybridization in a-NiFe(OH) is effectively strengthened by jointing with the adjacent oxygen (O) in c-NiFeO, which is further confirmed by the higher antibonding orbital energies based on density functional theory (DFT) calculations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Central South University, material science and engineering, 932 Lushan Road, 410083, Changsha, CHINA.
Hydrogen bond (HB) chemistry, a pivotal feature of aqueous zinc-ion batteries, modulates electrochemical processes through weak electrostatic interactions among water molecules. However, significant challenges persist, including sluggish desolvation kinetics and inescapable parasitic reactions at the electrolyte-electrode interface, associated with high water activity and strong Zn2+-solvent coordination. Herein, a targeted localized HB docking mechanism is activated by the polyhydroxy hexitol-based electrolyte, optimizing Zn2+ solvation structures via dipole interaction and reconstructing interfacial HB networks through preferential parallel adsorption.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada.
Membrane incompatibility poses significant health risks, including severe complications and potential fatality. Surface modification of membranes has emerged as a pivotal technology in the membrane industry, aiming to improve the hemocompatibility and performance of dialysis membranes by mitigating undesired membrane-protein interactions, which can lead to fouling and subsequent protein adsorption. Affinity energy, defined as the strength of interaction between membranes and human serum proteins, plays a crucial role in assessing membrane-protein interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!