A new class of chiral primary amine catalysts bearing multiple hydrogen-bonding donors have been designed and synthesized. The newly developed bifunctional organocatalysts efficiently catalyzed not only enantioselective conjugate addition of aromatic ketones to nitroolefins in good yields (up to 87%) with excellent enantioselectivities (97→99% ee) but also enantioselective conjugate addition of acetone to nitroolefins in excellent yields (90-96%) with high enantioselectivities (up to 97% ee).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo300011x | DOI Listing |
Org Lett
January 2025
Taizhou Research Institute, Southern University of Science and Technology, Taizhou 318014, Zhejiang, China.
Organocatalytic enantioselective formal nucleophilic substitution reactions of α-(2-hydroxynaphthalen-8-yl)propargyl alcohols with 1-(1-indol-3-yl)naphthalen-2-ols have been established for the first time. With the aid of a suitable chiral phosphoric acid, alkynyl 8-methylenenaphthalen-2(8)-one was formed in situ from the corresponding α-(2-hydroxynaphthalen-8-yl)propargyl alcohol, followed by enantioselective 1,6-conjugate additions of 1-(1-indol-3-yl)naphthalen-2-ols to afford a number of enantioenriched (,)-2,3-disubstituted indoles in 50-80% yields with 81-93% ee and (,)-2,3-disubstituted indoles in 18-40% yields with 79-96% ee. Notably, these nucleophilic substitution products were characterized by the presence of functional groups, including indole, naphthol, and alkynyl units, while exhibiting both axial and central chirality.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
A novel class of bis-8-aryl-isoquinoline () bis-alkylamine iron complexes, Fe()(OTf) and Fe()(OTf) ( = dipyrrolidinyl or = ,'-dimethylcyclohexyl-diamine), for asymmetric oxidation reactions is reported. The scalable divergent synthesis of 8-aryl-3-formylisoquinolines (), the key intermediates in preparing these ligands, enables precise structural and electronic tuning around the metal center. The enantioselective epoxidation and hydroxy carbonylation of conjugated alkenes, mediated by the Fe() catalyst with HO as the oxidant, demonstrates the potential of these redox Fe[N] catalysts in inducing face selection in oxygen transfer transformations.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.
The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
This work introduces a novel Mn(I)-catalyzed enantioselective alkylation methodology that efficiently produces a wide array of P-chiral phosphines with outstanding yields and enantioselectivities. Notably, the exceptional reactivity of Mn(I) complexes in these reactions is demonstrated by their effective catalysis with both typically reactive alkyl iodides and bromides, as well as with less reactive alkyl chlorides. This approach broadens the accessibility to various P-chiral phosphines and simplifies the synthesis of chiral tridentate pincer phosphines to a concise 1-2 step process, contrary to conventional, labor-intensive multistep procedures.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
The development and enantioselective synthesis of two types of -symmetric spirobi[dihydrophenalene] structures is reported. The reaction proceeds via rhodium-catalyzed 2-fold asymmetric conjugate arylation of dienones followed by BF·OEt-promoted spirocyclization to give the enantiopure spiro products. Additive-dependent chemodivergent synthesis of 3,3'-diarylated 2,2',3,3'-tetrahydro-1,1'-spirobi[phenalene]-9,9'-diols (3,3'-Ar-SPHENOLs) and the corresponding spiro diary ethers from the same intermediate is achieved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!