Download full-text PDF

Source

Publication Analysis

Top Keywords

[automated estimation
4
estimation severity
4
severity walking
4
walking disorders
4
disorders patients
4
patients stroke]
4
[automated
1
severity
1
walking
1
disorders
1

Similar Publications

Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array.

ACS EST Air

January 2025

Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the most common cancers among men worldwide, and robot-assisted radical prostatectomy (RARP) is a widely used treatment for localized PCa. Achieving pentafecta outcomes, which include continence, potency, cancer control, free surgical margins, and no major complications, is a critical measure of surgical success and long-term prognosis. However, predicting these outcomes remains challenging.

View Article and Find Full Text PDF

Geometric morphometrics is used in the biological sciences to quantify morphological traits. However, the need for manual landmark placement hampers scalability, which is both time-consuming, labor-intensive, and open to human error. The selected landmarks embody a specific hypothesis regarding the critical geometry relevant to the biological question.

View Article and Find Full Text PDF

Accuracy of Fully Automated and Human-assisted AI-based CT Quantification of Pleural Effusion Changes after Thoracentesis.

Radiol Artif Intell

January 2025

From the Department of Radiology (E.J.H., S.K., H.K., D. K., S.H.Y.) and Medical Research Collaborating Center (H.H.), Seoul National University Hospital, 101 Daehak- ro, Jongno-gu, Seoul 03080, Korea; Department of Radiology, Seoul National University College of Medicine (E.J.H., H.K., S.H.Y.), Seoul, Korea; Department of Radiology, Hanyang University Medical Center, Hanyang University College of Medicine (S-J.Y., Seoul, Korea).

Quantifying pleural effusion change on chest CT is important for evaluating disease severity and treatment response. The purpose of this study was to assess the accuracy of artificial intelligence (AI)-based volume quantification of pleural effusion change on CT images, using the volume of drained fluid as the reference standard. Seventy-nine participants (mean age, 65 ± [SD] 13 years; 47 male) undergoing thoracentesis were prospectively enrolled from October 2021 to September 2023.

View Article and Find Full Text PDF

Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals' natural energetic expenditure during walking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!